摘要
研究了不同睡眠状态下,运动前后脑功能网络指标的变化。将30名男性大学生随机分为睡眠剥夺(SD)组和正常睡眠(NC)组,并进行Bruce运动方案(跑台),分别在运动前后完成静息态脑电数据采集。利用相位延迟指数构建脑功能网络,基于图论分析脑功能网络拓扑属性,包括:聚类系数(C_(p))、特征路径长度(L_(p))、全局效率(E_(g))和局部效率(E_(L))。结果表明:与正常睡眠状态运动后相比,受试者在睡眠剥夺状态下完成运动后的脑功能网络中δ和θ频段的C_(p)、L_(p)和E_(L)显著升高(P<0.05),θ频段的E_(g)显著降低(P<0.05);α1频段的C_(p)和E_(L)显著升高(P<0.05),L_(p)和E_(g)显著降低(P<0.05)。结果说明睡眠不足将导致大脑工作效率降低且信息传递速度变慢进而影响运动表现。
In order to investigate the central neurological characteristics of sleep deprivation on performance of exercise,30 male college students were randomly assigned to complete the Bruce exercise program in the following morning under sleep deprivation(SD)and normal sleep(NC).Resting-state EEG data acquisition was completed before and after exercise;the brain functional network was constructed using phase lag index,and the topological properties of the brain functional network were analyzed based on a graph-theoretic approach,including clustering coefficient(C_(p)),characteristic path length(L_(p)),global efficiency(E_(g))and local efficiency(E_(L)).Compared with the results after exercise in the normal sleep state,the results of brain network topological properties after exercise in the sleep-deprived state showed that C_(p),L_(p) and E_(L) inδband were significantly increased(P<0.05);C_(p),L_(p) and E_(L) inθband were significantly increased,while E_(g) significantly decreased(P<0.05);C_(p) and E_(L) inα1 band were significantly increased(P<0.05),while L_(p) and E_(g) were significantly decreased(P<0.05).A lack of sleep may cause the brain to work inefficiently and transmit information more slowly,thus affecting performance of exercise.
作者
纽晓丹
肖涛
王保平
贺晓雄
池爱平
NIU Xiaodan;XIAO Tao;WANG Baoping;HE Xiaoxiong;CHI Aiping(School of Physical Education,Shaanxi Normal University,Xi’an 710119,Shaanxi,China)
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第6期104-112,共9页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金(31871209)
陕西师范大学体育学院标志性成果培育项目(2022AA002)。
关键词
睡眠剥夺
脑功能网络
运动表现
静息态EEG
sleep deprivation
functional brain network
performance of exercise
resting-state EEG