摘要
Environmental micro-vibration is one of the key factors impacting the running of electronic workshop.Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and testing equipment,and even causes irreversible damage to the equipment.Micro-vibration testing and response analysis are important to guide the vibration isolation design and ensure the stable operation of various precision equipment in the workshop.Parameters of Davidenkov model are fitted based on whale swarm optimization algorithm,and its applicability is verified.At the same time,taking the testing project of an electronic workshop raw land as an example,the micro-vibration response is analyzed.The results show that the nonlinear constitutive model constructed by whale optimization algorithm can simulate the dynamic nonlinear behavior of soil under the action of micro-vibration better.Compared with the traditional equivalent linearization method,the nonlinear constitutive model based on the whale optimization algorithm has a smaller acceleration response value.It can effectively suppress the“virtual resonance effect”produced by the equivalent linearization method.