期刊文献+

基于归一化互相关匹配算法和Kalman预测器的目标跟踪 被引量:5

Target Tracking Based on Normalized Cross-Correlation Matching Algorithm and Kalman Predictor
原文传递
导出
摘要 针对基于模板匹配的目标跟踪算法在目标被遮挡时容易出现跟踪丢失的问题,提出一种改进的结合遮挡判断和Kalman预测器的模板匹配算法。首先使用三帧差分法提取运动目标并计算运动目标区域。然后针对目标是否被遮挡引入Bhattacharyya距离进行判断,当Bhattacharyya距离小于设定的阈值,表明目标没有被遮挡,则使用归一化互相关(NCC)匹配算法对目标进行稳定跟踪,反之则利用Kalman预测器对被遮挡目标的位置和大小进行预测。实验结果表明,所提算法在静态背景下、目标发生遮挡时的跟踪成功率达到71.43%,比单一NCC匹配算法提高了21.43个百分点。 The target tracking algorithm based on template matching can easily lose track of its target when the target is occluded.To resolve this problem,an improved template matching algorithm combined with occlusion judgment and the Kalman predictor is proposed in this study.Initially,the three-frame difference method is adopted to extract the moving object and estimate the moving target area.Then,the Bhattacharyya distance is used to evaluate whether the target is occluded.The target is not occluded if the Bhattacharyya distance is less than the setting threshold,then,the normalized cross-correlation(NCC)matching algorithm is used to track the target in a stable manner.However,if the target is occluded,the location and size of the occluded target are predicted using the Kalman predictor.The experimental results indicate that the tracking success rate of the proposed algorithm is 71.43%when the target is occluded in a static background,which is 21.43 percentage greater than that of the single NCC matching algorithm.
作者 马永杰 龚影 陈敏 Ma Yongjie;Gong Ying;Chen Min(College of Physics and Electrowic Engineering,North uvest Normal University,Lanzhou,Gansu 730070,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第18期233-240,共8页 Laser & Optoelectronics Progress
关键词 图像处理 目标跟踪 三帧差分法 BHATTACHARYYA距离 归一化互相关匹配算法 Kalman预测器 image processing target tracking three-frame difference method Bhattacharyya distance normalizedcross-correlation matching algorithm Kalman predictor
  • 相关文献

参考文献9

二级参考文献66

  • 1辛云宏,杨万海.基于伪线性卡尔曼滤波的多站IRST系统跟踪技术[J].红外与毫米波学报,2005,24(5):374-377. 被引量:15
  • 2常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法[J].计算机工程与应用,2007,43(12):50-52. 被引量:40
  • 3Bakowki A, Jones G A. Video surveillance tracking using colour region adjacency graphs [ J ]. IEEE Conference Publi- cation. 1999,2 (465) : 794 - 798. 被引量:1
  • 4Wixson L. Detecting salient motion by accumulating direc- tionly-consistent flow [ J ]. IEEE Transactions of Pattern Analysis and Machine Intelligence. 2000,22( 8 ) :774 - 780. 被引量:1
  • 5A Shahbahrami, B Juurlink, S Vassiliadis. Accelerating color space conversion using Extended subwords and the matrix register file [ C ]. Eighth IEEE International Symposi- um on Multimedia ,2006:37 - 46. 被引量:1
  • 6David G. Lowe. Object recognition from Local seale-invari- ant features [ J ]. International Conference on Computer Vi- sion, Corfu, September, 1999,3 ( 1 ) : 1150 - 1157. 被引量:1
  • 7David G. Lowe. Distinctive image features from seale-invar- iant keypoints [ J ]. International Journal of Computer Vi- sion. 2004.60(2) :91 - 110. 被引量:1
  • 8WANG Hong-Bing, PENG Zhen-Ming, LIU Jie, et al. Fea- ture points detection and tracking based on SIFT combining with KLT method[ J]. Proc. SPIE. 2009(7506) :75062N1-10. 被引量:1
  • 9R E Kalman, A new approach to linear filtering and predic- tion problem[ J]. Trans on ASME. Journal of Basic Engi- neering, 1960,82 ( 1 ) : 35 - 45. 被引量:1
  • 10Kalman R E, Bucy R S. New methods and results in linear filtering and prediction theory[J]. Trans on ASME, Jour- nal of Basic Engineering, 1961,83 : 95 - 108. 被引量:1

共引文献280

同被引文献47

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部