期刊文献+

基于BSMOTE和CatBoost的“散乱污”企业研判方法

Identifying“Dispersed,Disordered and Polluted”Enterprises Method Based on BSMOTE and CatBoost Algorithms
下载PDF
导出
摘要 “散乱污”用户一直以来是环保监管的难点。针对利用电力数据精准识别“散乱污”的问题,文章提出一种基于BSMOTE和CatBoost的“散乱污”企业研判策略。首先,基于数据中台的客户档案和用电数据,通过特征工程构造多维特征,并筛选“散乱污”用户关键特征;其次,采用基于BSMOTE算法的自适应抽样方法进行样本平衡处理;最后,通过CatBoost算法开展福建省内疑似“散乱污”企业分析,算例结果验证了所提方法的可行性和有效性。 “Dispersed,Disordered and Polluted”enterprises have always been a difficulty in environmental supervision.Aiming at using power data to identify“Dispersed,Disordered and Polluted”enterprises,this paper proposes a strategy of recognizing“scattered and polluted”enterprises based on BSMOTE and CatBoost algorithms.Firstly,with customer profile and electricity consumption data in the data center,multi-dimensional features are built through engineering construction,and the key features are screened.Secondly,the adaptive sampling method based on BSMOTE algorithm is adopted for sample balance processing.Finally,the suspected"scattered and polluted"enterprises in Fujian Province is analyzed by CatBoost algorithm,and the results of the calculation example verify the feasibility and effectiveness of the proposed method in this paper.
作者 黄惠英 黄锐 邓勇 郑蔚涛 HUANG Huiying;HUANG Rui;DENG Yong;ZHENG Weitao(State Grid Fujian Electric Power Co.,Ltd.,Fuzhou 350000,China)
出处 《电力信息与通信技术》 2022年第11期105-113,共9页 Electric Power Information and Communication Technology
关键词 “散乱污”企业 电力大数据 污染防治监控 不均衡数据 “Dispersed,Disordered and Polluted”enterprises power big data pollution prevention and control monitoring unbalanced data
  • 相关文献

参考文献24

二级参考文献232

共引文献428

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部