期刊文献+

基于小样本不均衡数据的供水管道泄漏智能检测算法 被引量:4

Water supply pipeline leakage intelligent detection algorithm based on small and unbalanced data
下载PDF
导出
摘要 针对能源电厂供水管道泄漏视觉检测存在数据样本少、不均衡等问题,提出一种基于小样本不均衡数据的供水管道泄漏智能检测算法。首先,提出一种基于多掩码混合Multi-mask mix的数据增强方法,通过随机生成掩码层对原始图像进行区域提取与混合,在Multi-mask mix中引入支持向量机(SVM)获取管道正常和泄漏特征,为混合掩码块提供更准确的先验标签;其次,提出一种均衡化策略并应用于图像层面和掩码层面,以实现数据均衡化;最后,基于深度学习的Resnet18网络模型实现管道泄漏检测与识别。实验结果表明,该算法处理图像数据后可使Resnet18模型对管道泄漏识别准确率提升1.1%~4.4%,说明深度学习模型能有效提升管道泄漏检测的分类精度,优于现有其他算法。此外,该算法现已成功应用于能源电厂供水管道泄漏检测。 To address the problems of few and unbalanced data samples in the visual detection of water supply pipeline leakage in energy power plants,an intelligent detection algorithm for water supply pipeline leakage based on small sample unbalanced data was proposed.First,a data enhancement method based on Multi-mask mix was proposed.The original image was extracted and mixed by the mask layer randomly generated,and the support vector machine(SVM)was incorporated into Multi-mask mix to obtain pipeline normal and leakage features,thus providing more accurate prior labels for the hybrid mask blocks.Secondly,an equalization strategy was proposed and applied to the image level and mask level to achieve data equalization.Finally,a deep learning-based Resnet18 network model was utilized to attain pipeline leak detection and identification.The experimental results show that the algorithm can improve the accuracy of the Resnet18 model for pipeline leakage detection by 1.1%-4.4% after processing image data,and can effectively enhance the classification accuracy of the deep learning model for pipeline leakage detection,outperforming other existing algorithms.In addition,the algorithm has now been successfully applied to the leakage detection of water supply pipelines in energy power plants.
作者 孙宗康 饶睦敏 曹裕灵 史艳丽 SUN Zong-kang;RAO Mu-min;CAO Yu-ling;SHI Yan-li(Guangdong Electric Power Development Co.Ltd,Guangzhou Guangdong 510630,China;Guangdong Energy Group Science and Technology Research Institute Co.Ltd,Guangzhou Guangdong 510630,China;Library of South China Agricultural University,Guangzhou Guangdong 510642,China)
出处 《图学学报》 CSCD 北大核心 2022年第5期825-831,共7页 Journal of Graphics
基金 国家自然科学基金项目(51775116) 广东能源集团重点科技项目(YJY/20-033)。
关键词 小样本 多掩码混合 数据增强 数据均衡化 管道泄漏检测 small sample Multi-mask mix data enhancement data equalization pipeline leakage detection
  • 相关文献

参考文献7

二级参考文献65

共引文献332

同被引文献38

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部