期刊文献+

基于ARIMA和Prophet的水质预测集成学习模型 被引量:9

An ensemble learning model for water quality forecast based on ARIMA and Prophet
下载PDF
导出
摘要 将时间序列模型ARIMA和Prophet作为基学习器,结合BP神经网络模型构建了水质预测集成学习模型。选取长江流域某断面2019—2020年的DO、COD_(Mn)、NH_(3)-N、TP和TN等5个水质指标的监测数据对该模型的有效性进行了检验,结果表明:5个水质指标集成学习模型预测结果的平均绝对百分比误差比时间序列模型的预测误差分别低35.0%、29.9%、4.1%、40.6%和17.1%,模型预测值和监测值的皮尔逊相关系数大于0.8。集成学习模型预测精度高于单一模型,可以更精确地进行水质预测。 An ensemble learning model for water quality forecast was constructed by using time series models including ARIMA and Prophet model as base learners,combined with BP neural network model.The monitoring data of five water quality indicators,including DO,COD_(Mn),NH_(3)-N,TP and TN,for a section of the Yangtze River Basin from 2019 to 2020 were selected to test the validity of the model.The results show that the mean absolute percentage errors of the predicted results of the ensemble learning model for the five indicators were lower than those of the time series model by 35.0%,29.9%,4.1%,40.6%and 17.1%,respectively.The prediction accuracy of the ensemble learning model is higher than that of the single model,which can be more accurate for water quality forecast.
作者 嵇晓燕 杨凯 陈亚男 姚志鹏 王正 安新国 JI Xiaoyan;YANG Kai;CHEN Ya nan;YAO Zhipeng;WANG Zheng;AN Xinguo(China National Environmental Monitoring Center,Beijing 100012,China;Golden Water Technology(Beijing)Ltd.,Beijing 100012,China)
出处 《水资源保护》 EI CAS CSCD 北大核心 2022年第6期111-115,共5页 Water Resources Protection
基金 长江生态环境保护修复联合研究项目(2019-LHYJ-01-0301) 国家水环境监测监控及业务化平台技术研究课题(2017ZX07302002)。
关键词 水质预测 ARIMA模型 Prophet模型 集成学习 water quality forecast ARIMA model Prophet model ensemble learning
  • 相关文献

参考文献10

二级参考文献138

共引文献118

同被引文献97

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部