期刊文献+

地表水质分析及方法比较 被引量:3

Comparison of Surface Water Quality Analysis Methods
下载PDF
导出
摘要 在水质评价过程中,水环境质量等级之间存在非线性关系,这给水质评价工作带来难度。针对此,以某地地表水质作为研究对象,对单因子分析法、离散Hopfield神经网络模型和T-S模糊神经网络模型3种水质评价方法进行分析比较。仿真结果表明:模糊神经网络算法结合了神经网络系统和模糊系统的优势,集学习、联想、识别与信息处理于一体,评价结果稳定、合理,优于离散Hopfield神经网络模型,非常适合对于此类问题的研究;而单因子分析法存在一定的局限性。 In water quality assessment,nonlinear relationship between different water quality levels troubles the water quality evaluation.Taking the surface water from a place as the object of study,the single factor analysis method and discrete Hopfield neural network model and T-S fuzzy neural network algorithm for the water quality analysis were compared.The simulation results show that the fuzzy neural network algorithm which boasting of the superiority of both neural network system and fuzzy system in learning,association,recognition and information processing outperforms the discrete Hopfield neural network model in the water quality assessment,the assessment result from it is scientific and rational,but the single factor analysis method has some limitations.
出处 《化工自动化及仪表》 CAS 2012年第7期900-903,909,共5页 Control and Instruments in Chemical Industry
关键词 水质分析 水环境质量等级 非线性 模糊神经网络算法 单因子分析法 HOPFIELD 仿真 water quality analysis,water environment quality level,nonlinearity,fuzzy neural network algorithm,single factor analysis method,Hopfield,simulation
  • 相关文献

参考文献4

二级参考文献24

  • 1李如忠.水质评价理论模式研究进展及趋势分析[J].合肥工业大学学报(自然科学版),2005,28(4):369-373. 被引量:92
  • 2付英,曾敏,李兴源,刘俊勇,王贵德.隐含层对人工神经元网络电压安全评估的影响[J].电力系统自动化,1996,20(11):13-16. 被引量:9
  • 3Qing Zhang and Stephen J.Stanley.Forecasting raw-water quality parameters for the North Saskatchewan river by neural network modeling [J].Water.Res.,1997,131(9): 2340-2350. 被引量:1
  • 4Harro bode and Emst A.Nusch.Advanced river quality monitoring in the RUHR Basin[J]Wat.Sec.Tec.,1999,l40(10):145-152. 被引量:1
  • 5Holger R.Maier and Grame C.Dandy.Understanding the behavior and optimizing the performance of back-propagation neuralnetworks: an empirical study [J].Environmental Modeling & Software,1998,13: 179-191. 被引量:1
  • 6Joseph H.W.Lee,Yan Huang,Mike Dickman,A.W.Jayawardena.Neural network modeling of coastal algal blooms [J].Ecological Modelling 2003,159: 179-201. 被引量:1
  • 7Holger R.Maier,Grame C.Dandy.Neural Network Based Modeling of Environmental Variables: A Systematic Approach[J],Mathematical and Computer Modeling,2001,33: 669-682. 被引量:1
  • 8Shamshad Ahmad.Performance of stochastic approaches for forecasting river water quality [J].Water.Res.,2001,35(18):4261-4266. 被引量:1
  • 9Holger R.Maier.The use of artificial neural networks for the prediction of water quality parameters [J].Water resources research,1996,32(4):1013-1022. 被引量:1
  • 10Friedrich Recknagel et al.,Artificial neural network approach for modeling and prediction of algal blooms [J].Ecological Modeling,1997,96:11-28. 被引量:1

共引文献49

同被引文献19

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部