期刊文献+

内积空间矛盾方程组最小二乘解理论 被引量:2

Least Square Solution Theory of Contradictory Equations in Inner Product Space
下载PDF
导出
摘要 基于内积理论对线性矛盾方程组最小二乘解问题进行理论推导,将方程组系数矩阵的各列作为“基函数”在离散点的值,给出法方程组内积表示形式,证明最小二乘解的存在、唯一性.得到线性矛盾方程组系数矩阵列满秩是其最小二乘解存在、唯一的充分条件,两种理论(极值理论与内积理论)所得法方程组是等价的,算例显示用新方法易于求得法方程组. Defined the base function value at the points as the corresponding column of the coefficient matrix,the normal equations are obtained for the linear contradictory equations in inner product form.The theory is proved on the existence and uniqueness of the solution and the equivalence between the results from the inner product theory and from the extreme value theory.It is the sufficient condition that the coefficient matrix is the full column rank one for the unique least square solution of the linear contradictory equations.Examples show it is easy to calculate the normal equations using the algorithm in this paper.
作者 郑素佩 封建湖 宋学力 ZHENG Supei;FENG Jianhu;SONG Xueli(School of Science,Chang’an University,Xi’an 710064,China)
机构地区 长安大学理学院
出处 《大学数学》 2022年第5期74-80,共7页 College Mathematics
基金 陕西省高等教育教学改革研究项目(21BY030) 长安大学研究生教育教学改革项目(300103120035) 长安大学国际教育教学改革项目(300108211029)。
关键词 线性矛盾方程组 内积空间 列满秩 存在、唯一性 等价性 linear contradictory equations inner product space full column rank existence and uniqueness equivalence
  • 相关文献

参考文献4

二级参考文献3

共引文献71

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部