期刊文献+

基于机器学习的网络入侵检测算法研究 被引量:11

NETWORK INTRUSION DETECTION ALGORITHM BASED ON MACHINE LEARNING
下载PDF
导出
摘要 针对目前入侵检测系统对少数攻击类的识别率较低的问题,提出一种基于卷积神经网络和随机森林的分类方法。对CICIDS2017数据集中的数据进行预处理,并用SMOTE算法进行数据平衡;用卷积神经网络对BENIGN类和ATTACK类进行二分类,分离出ATTACK类;用PCA进行特征选择,减少特征维度,并用随机森林算法对ATTACK类进行多分类。与其他算法相比,该方法不仅增加了少数攻击类的识别率,并且对其余类的识别率也有所增加。 Aimed at the problem that the current intrusion detection system has a low recognition rate for a few attack classes,a classification method based on convolutional neural networks and random forests is proposed.The data in the CICIDS2017 data set was pre-processed,and the data was balanced using the SMOTE algorithm.The convolutional neural network was used to classify the BENIGN and ATTACK classes to separate the ATTACK classes.The PCA was used for feature selection to reduce feature dimensions,and random forest algorithm was used for multi-classification of ATTACK class.Compared with other algorithms,the proposed method not only increased the recognition rate of a few attack classes,but also increased the recognition classes of the remaining classes.
作者 张志飞 王露漫 Zhang Zhifei;Wang Luman(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China)
出处 《计算机应用与软件》 北大核心 2022年第10期336-343,共8页 Computer Applications and Software
基金 国家科技支撑计划项目(2015BAG12B01-08)。
关键词 机器学习 卷积神经网络 随机森林 PCA 入侵检测 Machine learning Convolutional neural network Random forest PCA Intrusion detection
  • 相关文献

参考文献6

二级参考文献48

  • 1Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-140. 被引量:1
  • 2Ho T.The random subspace method for constructing decision forests[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):832-844. 被引量:1
  • 3Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32. 被引量:1
  • 4Zhang H,Wang M.Search for the smallest random forest[J].Statistics and ITS Interface,2009,2(3). 被引量:1
  • 5Díaz-Uriarte R,De Andres S A.Gene selection and classification of microarray data using random forest[J].BMC Bioinformatics,2006,7(1). 被引量:1
  • 6Svetnik V,Liaw A,Tong C,et al.Random forest:a classification and regression tool for compound classification and QSAR modeling[J].Journal of Chemical Information and Computer Sciences,2003,43(6):1947-1958. 被引量:1
  • 7Oshiro T M,Perez P S,Baranauskas J A.How many trees in a random forest[M]//Machine learning and data mining in pattern recognition.Berlin Heidelberg:Springer,2012:154-168. 被引量:1
  • 8Kulkarni V Y,Sinha P K.Pruning of random forest classifiers:a survey and future directions[C]//2012 International Conference on Data Science&Engineering(ICDSE),2012:64-68. 被引量:1
  • 9Dietterich T G.Approximate statistical tests for comparing supervised classification learning algorithms[J].Neural Computation,1998,10(7):1895-1923. 被引量:1
  • 10Alpaydm E.Combined 5×2 cv F test for comparing supervised classification learning algorithms[J].Neural Computation,1999,11(8):1885-1892. 被引量:1

共引文献139

同被引文献91

引证文献11

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部