期刊文献+

复杂环境背景下光纤通信信道中噪声去除方法研究 被引量:5

Research on noise removal method in optical fiber communication channel under complex environment
原文传递
导出
摘要 研究复杂环境背景下光纤通信信道中噪声去除方法,提高光纤通信信道数据传输质量。应用TPS-2024数字信号示波器采集多种复杂环境下信道中光纤通信信号数据,并利用K-means聚类算法聚类处理采集到的光纤通信信号数据,利用改进平移不变量小波阈值信道噪声去除方法,通过对光纤通信信号执行离散小波变换、平移、小波重构以及反平移等操作,去除光纤通信信号中的噪声,获得光纤通信信道同相位最终去噪信号。实验结果表明:该方法三条故障频率曲线非常接近,且即使数据量为80 000,传输速度为1 000 bit时,节点故障频率也仅为400次/时。能够实现复杂环境背景下光纤通信信道中噪声的有效去除,提高光纤通信信道数据传输质量、传输安全性与可靠性。 The noise removal method in optical fiber communication channel under the background of complex environment is studied to improve the data transmission quality of optical fiber communication channel. The digital signal oscilloscope is used to collect the optical fiber communication signal data in the channel under various complex environments, and the K-means clustering algorithm is used to cluster the collected optical fiber communication signal data. The improved translation invariant wavelet threshold channel noise removal method is used to perform discrete wavelet transform, translation, wavelet reconstruction and anti translation on the optical fiber communication signal, Remove the noise in the optical fiber communication signal and obtain the final de-noising signal in the same phase of the optical fiber communication channel. The experimental results show that the three fault frequency curves of this method are very close, and even if the amount of data is 80000 and the transmission speed is 1000 bit, the node fault frequency is only 400 times/hour. It can effectively remove the noise in the optical fiber communication channel under the background of complex environment, and improve the data transmission quality, transmission security and reliability of optical fiber communication channel.
作者 饶强 RAO qiang(Information&Communication Branch of State Grid Hubei Electric Power Company,Wuhan 430077,China)
出处 《自动化与仪器仪表》 2022年第9期79-83,共5页 Automation & Instrumentation
基金 国网湖北信通公司基于时空重叠和激励扩散的电力通信网反事故演习和优化关键技术研究及试点应用(52153318004H)。
关键词 复杂环境背景 光纤通信信道 噪声去除 数据采集 K-MEANS聚类算法 小波变换 complex environment background optical fiber communication channel noise removal data acquisition K-means clustering algorithm wavelet transform
  • 相关文献

参考文献14

二级参考文献67

共引文献80

同被引文献47

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部