摘要
目的探讨基于扩散加权成像(diffusion weighted imaging,DWI)的单指数、分数微积分(fractional order calculus,FROC)模型和氟代脱氧葡萄糖正电子发射断层扫描(^(18)F-fluorodeoxyglucose-positron emission tomography,^(18)F-FDG PET)在评估肺腺癌增殖状态中的价值。材料与方法选取经我院病理证实的64例肺腺癌患者,以Ki-67表达25%为界,>25%为高Ki-67组,≤25%为低Ki-67组。所有患者在治疗前均行肺部^(18)F-FDG PET/MR检查,其中DWI采取10个b值(0~1000 s/mm^(2))扫描。比较两组间表观扩散系数(apparent diffusion coefficient,ADC)、空间变量(a microstructural quantity,μ)、扩散系数(diffusion coefficient,D)、分数空间导数(fractional order parameter,β)、最大标准摄取值(maximum standardized uptake value,SUV_(max))有无显著差异。通过多因素logistic回归分析Ki-67增殖状态的独立预测因素,采用受试者工作特征曲线(receiver operating characteristic curve,ROC)评估鉴别效能,并分析各参数与Ki-67之间的相关性。结果低Ki-67组的ADC、D、β显著大于高Ki-67组(P<0.05),高Ki-67组的μ、SUV_(max)显著大于低Ki-67组(P<0.05)。参数D和SUV_(max)曲线下面积分别为0.873和0.727,且多因素logistic回归显示D值(OR:0.421,95%CI:0.245~0.723,P=0.002)和SUV_(max)值(OR:1.022,95%CI:1.002~1.042,P=0.031)是Ki-67高表达的独立危险因素。ADC值和D值与Ki-67呈负相关(r=-0.361,r=-0.420),μ和SUV_(max)值与Ki-67呈正相关(r=0.369,r=0.527)。结论单指数、FROC模型和^(18)F-FDG PET均是评估肺腺癌增殖状态的有效手段,其中FROC模型的D值具有最高的诊断效能。FROC模型为探索肿瘤组织微环境信息提供了新的视角,在无创评估肺腺癌增殖状态方面具有很大潜力,其临床应用前景广阔。
Objective:To explore the value of monoexponential,fractional order calculus(FROC)models based on diffusion weighted imaging(DWI)and ^(18)F-fluorodeoxyglucose-positron emission tomography(^(18)F-FDG PET)in assessing the proliferation status of lung adenocarcinoma.Materials and Methods:Atotal of 64 patients with lung adenocarcinoma confirmed by pathology in our hospital were included.The expression of Ki-67 in lung cancer tissues was detected by immunohistochemistry and divided into the high Ki-67 group(>25%)and the low Ki-67 group(≤25%).Before treatment,all patients underwent a dedicated thoracic ^(18)F-FDG PET/MR examination.The DWI was scanned with 10 b-values(0-1000 s/mm^(2)).The apparent diffusion coefficient(ADC),a microstructural quantity(μ),diffusion coefficient(D),fractional order parameter(β)and maximum standardized uptake value(SUV_(max))were compared between the two groups.The independent predictors of Ki-67 proliferative status were analyzed by multivariate logistic regression,receiver operating characteristic(ROC)curve was used to evaluate the discriminant performance,and the correlation between each parameter and Ki-67 was analyzed.Results:TheADC,D,andβvalues in the low Ki-67 group were significantly higher than in the high Ki-67 group(P<0.05),and theμand SUV_(max) values in the high Ki-67 group were significantly higher than in the low Ki-67 group(P<0.05).The area under the curve(AUC)of parameters D and SUV_(max) were 0.873 and 0.727,respectively,and multivariate logistic regression showed that parameters D(OR:0.421,95%CI:0.245-0.723,P=0.002)and SUV_(max)(OR:1.022,95%CI:1.002-1.042,P=0.031)were independent risk factors for high Ki-67 expression.ADC and D values were negatively correlated with Ki-67(r=-0.361,r=-0.420),andμand SUV_(max) values were positively correlated with Ki-67(r=0.369,r=0.527).Conclusions:Monoexponential,FROC models and ^(18)F-FDG PET are effective methods to evaluate the proliferation status of lung adenocarcinoma,and the D value of FROC model shows the highest diagnostic
作者
罗与
孟楠
黄准
魏巍
李自强
付芳芳
袁健闵
王哲
王梅云
LUO Yu;MENG Nan;HUANG Zhun;WEI Wei;LI Ziqiang;FU Fangfang;YUAN Jianmin;WANG Zhe;WANG Meiyun(Department of Medical Imaging,Henan Provincial People's Hospital&Zhengzhou University People's Hospital,Zhengzhou 450000,China;Department of Medical Imaging,Henan Provincial People's Hospital,Zhengzhou 450000,China;Department of Medical Imaging,Henan University People's Hospital&Henan Provincial People's Hospital,Zhengzhou 450000,China;Department of Medical Imaging,Xinxiang Medical University&Henan Provincial People's Hospital,Zhengzhou 450000,China;Central Research Institute,Shanghai United Imaging Healthcare Co.,Ltd.,Shanghai 201807,China)
出处
《磁共振成像》
CAS
CSCD
北大核心
2022年第10期121-126,共6页
Chinese Journal of Magnetic Resonance Imaging
基金
河南省科技攻关项目(编号:212102310689)
河南省医学科技攻关计划联合共建项目(编号:LHGJ20210001)。
关键词
肺腺癌
Ki-67
单指数
分数微积分模型
氟代脱氧葡萄糖正电子发射断层扫描
磁共振成像
鉴别诊断
lung adenocarcinoma
Ki-67
monoexponential
fractional order calculus model
^(18)F-fluorodeoxyglucose-positron emission tomography
magnetic resonance imaging
differential diagnosis