期刊文献+

突破智慧教育:基于图学习的课程推荐系统 被引量:19

Breakthrough in Smart Education:Course Recommendation System Based on Graph Learning
下载PDF
导出
摘要 近年来,随着互联网技术的迅猛发展,以慕课(MOOC)为代表的在线教育平台得到广泛普及.为助力“因材施教”的个性化智慧教育,以推荐算法为代表的人工智能技术受到了学术界与工业界的普遍关注.虽然在电子商务等领域获得了成功应用,但推荐算法与在线教育融合时仍面临严峻挑战:现有算法对隐式交互数据的挖掘不充足,推荐背后的知识指导作用不明显,面向实践的推荐系统软件有缺失.对此,设计了一套面向工业化场景的智慧课程推荐系统:(1)提出基于图卷积神经网络的推荐引擎,将“用户-课程”隐式交互数据建模为异构图;(2)将课程知识信息融入“用户-课程”异构图,深入挖掘了“用户-课程-知识”关联关系;(3)设计了高效的在线推荐系统,实现了“预处理-召回-离线排序-在线推荐-结果融合”的多段流水线原型,不仅能够快速响应课程推荐请求,更能有效缓解推荐算法落地的最大障碍——冷启动问题.最后,基于真实课程学习平台数据集,以对比实验表明了离线推荐引擎相比其他主流推荐算法的先进性,并基于两个典型用例分析验证了在线推荐系统面临工业场景需求的可用性. With the rapid development of Internet technology,online course learning platforms like MOOCs have gained wide popularity in recent years.In order to facilitate the personalized smart education of“teach students in accordance with their aptitude”,artificial intelligence technologies,represented by recommendation algorithms,have been widely focused by communities of academia and industry.Although it has been successfully applied in e-commerce and other fields,the integration of recommendation algorithms into online education scenarios still faces severe challenges:Existing algorithms are not competent in mining implicit interactives,guidance from knowledge towards recommendation is not effective,and there are still few sights on practical recommendation system software.Therefore,an intelligent course recommendation system is proposed for industrial scenarios,which includes:(1)an offline recommendation engine based on graph convolutional neural network,modeling the“user-course”implicit interaction behavior as a heterogeneous graph,and extracting course knowledge information to guide the model learning and training.Therefore,the relationship like“user-course-knowledge”can be fully and deeply mined;(2)an efficient online recommendation system prototype based on multistage pipeline of“preprocess-recall-offline sort-online recommend-result fuse”.Besides quickly responding to course recommendation requests,it can effectively alleviate the major obstacle to recommender systems,the cold start problem.Finally,based on a course learning dataset from real platform,extensive experiments are conducted to show that the proposed offline recommendation engine is competitive with other mainstream recommendation algorithms.And based on the analysis of two typical use cases,the usability of the proposed online recommendation system when facing industrial needs is verified.
作者 歹杰 李青山 褚华 周洋涛 杨文勇 卫彪彪 DAI Jie;LI Qing-Shan;CHU Hua;ZHOU Yang-Tao;YANG Wen-Yong;WEI Biao-Biao(School of Computer Science and Technology,Xidian University,Xi’an 710071,China)
出处 《软件学报》 EI CSCD 北大核心 2022年第10期3656-3672,共17页 Journal of Software
基金 国家自然科学基金(61972300,61902288,U21B2015) 陕西省自然科学基础研究计划(2020JQ-300) 国家重点研发计划(2019YFB1406404) 中国科学院战略性先导科技专项(C类)(XDC05040100)。
关键词 个性化教育 图卷积神经网络 在线推荐系统 机器学习 personalized education graph convolutional network online recommendation system machine learning
  • 相关文献

参考文献8

二级参考文献86

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217. 被引量:1
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201. 被引量:1
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186. 被引量:1
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999. 被引量:1
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362. 被引量:1
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html 被引量:1
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749. 被引量:1
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58. 被引量:1
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72. 被引量:1
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166. 被引量:1

共引文献1069

同被引文献139

引证文献19

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部