摘要
Synchrophasor measurements are essential to realtime situational awareness of the smart grid but vulnerable to cyber-attacks during the process of transmission and invocation.To ensure data security and mitigate the impact of spoofed synchrophasor measurements,this work proposes a novel object detection method using a Weight-based One-dimensional Convolutional Segmentation Network(WOCSN)with the ability of attack behavior identification and time localization.In WOCSN,automatic data feature extraction can be achieved by onedimensional convolution from the input signal,thereby reducing the impact of handcrafted features.A weight loss function is designed to distribute the contribution for normal and attack signals.Then,attack time is located via the proposed binary method based on pixel segmentation.Furthermore,the actual synchrophasor data collected from four locations are used for the performance evaluation of the WOCSN.Finally,combined with designed evaluation metrics,the time localization ability of WOCSN is validated in the scenarios of composite attacks with different spoofed intensities and time-sensitivities.
基金
This work is supported in part by the CURENT Industry Partnership Program,in part by the Engineering Research Center Program of the National Science Foundation,DOE under NSF Award Number EEC-1041877
in part by the National Natural Science Foundation of China under award number 52177078
in part with the project funded by China Postdoctoral Science Foundation under award number BX20220102.