摘要
An implicit discontinuous Galerkin method is introduced to solve the timedomain Maxwell’s equations in metamaterials.The Maxwell’s equations in metamaterials are represented by integral-differential equations.Our scheme is based on discontinuous Galerkin method in spatial domain and Crank-Nicolson method in temporal domain.The fully discrete numerical scheme is proved to be unconditionally stable.When polynomial of degree at most p is used for spatial approximation,our scheme is verified to converge at a rate of O(τ^(2)+h^(p)+1/2).Numerical results in both 2D and 3D are provided to validate our theoretical prediction.
基金
supported by the National Natural Science Foundation of China(Grant Nos.11171104,91430107)
the Construct Program of the Key Discipline in Hunan.This first author is supported by Hunan Provincial Innovation Foundation for Postgraduate under Grant CX2013B217.