摘要
针对Lipschitz多面体区域上H(curl)-椭圆问题的不连续Galerkin法,提出了一种新的基于残量型的后验误差估计,并证明了该后验误差的一个上界估计.其中问题的最困难性在于如何处理跳跃项中出现的局部网格尺寸的负次幂.
A new posteriori error estimate based on residual for discontinuous Galerkin discretizations of H( curl)- elliptic problems on Lipschitz polyhedron is proposed. The corresponding upper bound is proved. One of the most difficult problem here is how to deal with the presence of the negative power of the local mesh size in the jump term.
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2012年第3期18-21,共4页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(10971074
11171359)