期刊文献+

When the Schur functor induces a triangle-equivalence between Gorenstein defect categories 被引量:1

原文传递
导出
摘要 Let R be an Artin algebra and e be an idempotent of R. Assume that Tor_(i)^(eRe)(Re, G) = 0 for any G ∈ GprojeRe and i sufficiently large. Necessary and sufficient conditions are given for the Schur functor S_(e) to induce a triangle-equivalence ■. Combining this with a result of Psaroudakis et al.(2014),we provide necessary and sufficient conditions for the singular equivalence ■ to restrict to a triangle-equivalence ■. Applying these to the triangular matrix algebra ■,corresponding results between candidate categories of T and A(resp. B) are obtained. As a consequence,we infer Gorensteinness and CM(Cohen-Macaulay)-freeness of T from those of A(resp. B). Some concrete examples are given to indicate that one can realize the Gorenstein defect category of a triangular matrix algebra as the singularity category of one of its corner algebras.
出处 《Science China Mathematics》 SCIE CSCD 2022年第10期2019-2034,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 11626179, 12101474, 12171206 and 11701455) Natural Science Foundation of Jiangsu Province (Grant No. BK20211358) Natural Science Basic Research Plan in Shaanxi Province of China (Grant Nos. 2017JQ1012 and 2020JM-178) Fundamental Research Funds for the Central Universities (Grant Nos. JB160703 and 2452020182)。
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部