期刊文献+

Broad Learning System for Tackling Emerging Challenges in Face Recognition 被引量:1

下载PDF
导出
摘要 Face recognition has been rapidly developed and widely used.However,there is still considerable uncertainty in the computational intelligence based on human-centric visual understanding.Emerging challenges for face recognition are resulted from information loss.This study aims to tackle these challenges with a broad learning system(BLS).We integrated two models,IR3C with BLS and IR3C with a triplet loss,to control the learning process.In our experiments,we used different strategies to generate more challenging datasets and analyzed the competitiveness,sensitivity,and practicability of the proposed two models.In the model of IR3C with BLS,the recognition rates for the four challenging strategies are all 100%.In the model of IR3C with a triplet loss,the recognition rates are 94.61%,94.61%,96.95%,96.23%,respectively.The experiment results indicate that the proposed two models can achieve a good performance in tackling the considered information loss challenges from face recognition.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1597-1619,共23页 工程与科学中的计算机建模(英文)
基金 funded by the Shanghai High-Level Base-Building Project for Industrial Technology Innovation(1021GN204005-A06) the National Natural Science Foundation of China(41571299) the Ningbo Natural Science Foundation(2019A610106).
  • 相关文献

参考文献1

共引文献5

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部