期刊文献+

Aggregation Operators for Interval-Valued Pythagorean Fuzzy Hypersoft Set with Their Application to Solve MCDM Problem

下载PDF
导出
摘要 Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期619-651,共33页 工程与科学中的计算机建模(英文)
基金 funding this work through General Research Project under Grant No.R.G.P.327/43.
  • 相关文献

参考文献4

二级参考文献16

  • 1徐泽水,陈剑.一种基于区间直觉判断矩阵的群决策方法[J].系统工程理论与实践,2007,27(4):126-133. 被引量:140
  • 2徐泽水.区间直觉模糊信息的集成方法及其在决策中的应用[J].控制与决策,2007,22(2):215-219. 被引量:217
  • 3Molodtsov D A.Soft Set Theory-first Results[J].Computers and Mathematics with Applications,1999,37(4):19-31. 被引量:1
  • 4Maji P K,Biswas R,Roy A R.Fuzzy Soft Set[J].Journal of Fuzzy Mathematics,2001,9(3):589-602. 被引量:1
  • 5Maji P K,Biswas R,Roy A R.Intuitionistic Fuzzy Soft Set[J].Journal of Fuzzy Mathematics,2001,9(3):677-692. 被引量:1
  • 6Yang Yong,Tan Xia,Meng Congcong.The Multi-fuzzy Soft Set and Its Application in Decision Making[J].Applied Mathematical Modelling,2013,37(7):4915-4923. 被引量:1
  • 7Lee K M.Bipolar-valued Fuzzy Sets and Their Basic Operations[C]//Proceedings of International Conference.Berlin,Germany:Springer-Verlag,2000:307-317. 被引量:1
  • 8Yang Yong,Peng Xindong,Chen Hao,et al.A Decision Making Approach Based on Bipolar Multi-fuzzy Soft Set Theory[J].Journal of Intelligent and Fuzzy Systems,2014,27(4):1861-1872. 被引量:1
  • 9Yager R R.Pythagorean Membership Grades in Multicriteria Decision Making[J].IEEE Transactions on Fuzzy Systems,2014,22(4):958-965. 被引量:1
  • 10Yager R R,Abbasov A M.Pythagorean Membership Grades,Complex Numbers,and Decision Making[J].International Journal of Intelligent Systems,2013,28(5):436-452. 被引量:1

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部