期刊文献+

毕达哥拉斯犹豫模糊集 被引量:47

Pythagorean Hesitant Fuzzy Set
原文传递
导出
摘要 通过将犹豫模糊集与毕达哥拉斯模糊集相结合,提出毕达哥拉斯犹豫模糊集的概念,定义毕达哥拉斯犹豫模糊数的运算,研究其运算性质,并定义其得分函数实现毕达哥拉斯犹豫模糊数的大小比较。然后,提出毕达哥拉斯犹豫模糊数的加权算术平均算子和加权几何平均算子,并研究它们的性质。最后,给出一种基于毕达哥拉斯犹豫模糊信息的决策方法,并通过算例说明其可行性与有效性。 Pythagorean hesitant fuzzy set is defined by combining hesitant fuzzy set and Pythagorean fuzzy set, and the operations and operation natures of Pythagorean hesitant fuzzy numbers are studies. By constructing score functions of Pythagorean hesitant fuzzy numbers, ranking of Pythagorean hesitant fuzzy numbers are accomplished. Then, the weighted arithmetic average operator and the weighted geometric average operator of Pythagorean hesitant fuzzy numbers are proposed and their natures are discussed. Finally, a decision making method with Pythagorean hesitant fuzzy numbers is given, and an example is used to illustrate the feasibility and applicability of the proposed method.
作者 刘卫锋 何霞
出处 《模糊系统与数学》 CSCD 北大核心 2016年第4期107-115,共9页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11501525) 河南省教育厅科学技术研究重点项目(16A630061) 郑州航空工业管理学院青年科研基金资助(2016113001)
关键词 毕达哥拉斯犹豫模糊集 毕达哥拉斯犹豫模糊数 毕达哥拉斯模糊集 犹豫模糊集 决策 Pythagorean Hesitant Fuzzy Set Pythagorean Hesitant Fuzzy Number Pythagorean Fuzzy Set Hesitant Fuzzy Set Decision Making
  • 相关文献

参考文献3

  • 1徐泽水著..直觉模糊信息集成理论及应用[M].北京:科学出版社,2008:214.
  • 2雷英杰著..直觉模糊集理论及应用[M].北京:科学出版社,2014:282-563.
  • 3彭新东,杨勇,宋娟萍,蒋芸.毕达哥拉斯模糊软集及其应用[J].计算机工程,2015,41(7):224-229. 被引量:40

二级参考文献13

  • 1Molodtsov D A.Soft Set Theory-first Results[J].Computers and Mathematics with Applications,1999,37(4):19-31. 被引量:1
  • 2Maji P K,Biswas R,Roy A R.Fuzzy Soft Set[J].Journal of Fuzzy Mathematics,2001,9(3):589-602. 被引量:1
  • 3Maji P K,Biswas R,Roy A R.Intuitionistic Fuzzy Soft Set[J].Journal of Fuzzy Mathematics,2001,9(3):677-692. 被引量:1
  • 4Yang Yong,Tan Xia,Meng Congcong.The Multi-fuzzy Soft Set and Its Application in Decision Making[J].Applied Mathematical Modelling,2013,37(7):4915-4923. 被引量:1
  • 5Lee K M.Bipolar-valued Fuzzy Sets and Their Basic Operations[C]//Proceedings of International Conference.Berlin,Germany:Springer-Verlag,2000:307-317. 被引量:1
  • 6Yang Yong,Peng Xindong,Chen Hao,et al.A Decision Making Approach Based on Bipolar Multi-fuzzy Soft Set Theory[J].Journal of Intelligent and Fuzzy Systems,2014,27(4):1861-1872. 被引量:1
  • 7Yager R R.Pythagorean Membership Grades in Multicriteria Decision Making[J].IEEE Transactions on Fuzzy Systems,2014,22(4):958-965. 被引量:1
  • 8Yager R R,Abbasov A M.Pythagorean Membership Grades,Complex Numbers,and Decision Making[J].International Journal of Intelligent Systems,2013,28(5):436-452. 被引量:1
  • 9Atanassov K.Intuitionistic Fuzzy Sets[J].Fuzzy Sets and Systems,1986,20(1):87-96. 被引量:1
  • 10Zhang Xiaolu,Xu Zeshui.Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets[J].International Journal of Intelligent Systems,2014,29(12):1061-1078. 被引量:1

共引文献39

同被引文献207

引证文献47

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部