期刊文献+

数据平衡与模型融合的用户购买行为预测 被引量:2

PREDICTION OF USER PURCHASE BEHAVIOR BASED ON DATA BALANCE AND MODEL FUSION
下载PDF
导出
摘要 为了提高电子商务中的用户购买行为预测的效果,提出数据平衡与模型融合的方法来对用户购买行为进行预测。在对用户行为数据提取特征时发现数据样本类别存在严重不平衡的情况,针对这一问题运用改进的欠采样平衡方法处理用户行为数据,运用基于极端梯度提升(XGBoost)算法的融合模型对用户购买行为进行预测。以京东商城的交易数据作为实验数据集,通过与单一预测模型的对比实验证明了在预测精度和泛化能力方面融合模型相较于单一预测模型的表现都更好。 In order to improve the effect of prediction of user purchase behavior in e-commerce,this paper proposes a method of data balance and model fusion to predict users’purchase behavior.When extracting features from user behavior data,it is found that there is a serious imbalance in the categories of data samples.To address this problem,an improved under-sampling data balance method was used to process user behavior data,and a fusion model based on the XGBoost algorithm was used to predict user s’purchase behavior.Taking the transaction data of Jingdong Mall as the experimental data set,the comparative experiment with the single prediction model proves that the fusion model performs better than the single prediction model in terms of prediction accuracy and generalization ability.
作者 李伊林 段海龙 林振荣 Li Yilin;Duan Hailong;Lin Zhenrong(Jiangxi Province Institute of Water Sciences,Nanchang 330029,Jiangxi,China;School of Information Engineering,Nanchang University,Nanchang 330031,Jiangxi,China)
出处 《计算机应用与软件》 北大核心 2022年第9期50-55,86,共7页 Computer Applications and Software
基金 江西省自然科学基金项目(20161BAB212040)。
关键词 购买预测 数据平衡 极端梯度提升 融合模型 Purchase forecast Data balance Extreme gradient boosting Fusion model
  • 相关文献

参考文献13

二级参考文献125

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2吴国华,潘德惠.顾客购买行为影响因素分析及重购概率的预测[J].管理工程学报,2005,19(1):104-107. 被引量:10
  • 3俞扬,周志华.集成学习中完全随机学习策略研究[J].计算机工程,2006,32(17):100-102. 被引量:2
  • 4WU Xin-dong,KUMAR V,QUINLAN J R,et al.Top 10 algorithms in data mining[J].Knowledge and Information Systems,2008,14(1):1-37. 被引量:1
  • 5CHAWLA N V,JAPKOWICZ N,KOTCZ A.Editorial:special issue on learning from imbalanced data sets[J].ACM SIGKDD Explorations Newsletter,2004,6(1):1-6. 被引量:1
  • 6HE Hai-bo,GARCIA E A.Learning from imbalanced data[J].IEEE Trans on Knowledge and Data Engineering,2009,21(9):1263-1284. 被引量:1
  • 7TING K M.A comparative study of cost-sensitive boosting algorithms[C]//Proc of the 17th International Conference on Machine Learning.2000:983-990. 被引量:1
  • 8FAN Wei,STOLFO S J,ZHANG Jun-xin,et al.AdaCost:misclassification cost-sensitive boosting[C]//Proc of the 16th International Conference on Machine Learning.1999:97-105. 被引量:1
  • 9SUN Yan-min,KAMEL M S,WONG A K C,et al.Cost-sensitive boosting for classification of imbalanced data[J].Pattern Recognition,2007,40(12):3358-3378. 被引量:1
  • 10GALAR M,FERNNDEZ A,BARRENCHEA E,et al.EUSBoost:enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling[J].Pattern Recognition,2013,46(12):3460-3471. 被引量:1

共引文献494

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部