期刊文献+

基于距离和属性加权的FWKNN室内定位方法 被引量:2

FWKNN Indoor Positioning Method Based Distance and Attribute Weighting
下载PDF
导出
摘要 为了提高基于接收信号强度(received signal strength,RSS)的WiFi指纹定位方法的定位精度,提出基于距离和属性加权的室内定位方法(feature weighted K-nearest neighbors,FWKNN)。首先,对不同距离的主特征RSS进行权重分配计算加权距离;然后,用加权距离与离线指纹库进行匹配确定未知位置,对K近邻算法进行了改进;最后,利用卡尔曼滤波精确定位结果,进一步提升定位精度。上述算法结合了距离加权和属性加权的优点,能够更准确的计算各点的距离并选择合适的最近邻点。实验结果表明,FWKNN与KNN和GWKNN相比平均定位精度分别提升了34.6%和27.1%。 In order to improve the positioning accuracy of the WiFi fingerprint position method on the basis of received signal strength(RSS),an indoor position method FWKNN(feature weighted K-nearest neighbors)based on distance and attribute weighting is proposed.First,the weights of the main feature RSS with different distances were assigned to calculate the weighted distance.Then,the weighted distance was used to match the offline fingerprint database to determine the unknown position.Finally,the positioning accuracy was further improved with the accurate positioning results of the Kalman filter.The algorithm unites the benefits of distance weighting and attributes weighting,which can calculate the distance of each point more accurately and select the appropriate nearest neighbor.The experimental results display that the accuracy of FWKNN is raised by 34.6%and 27.1%compared with KNN and GWKNN respectively.
作者 缪颖 朱正伟 诸燕平 MIAO Ying;ZHU Zheng-wei;ZHU Yan-ping(School of Microelectronics and Control Engineering,Changzhou University,Jiangsu Changzhou 213164,China)
出处 《计算机仿真》 北大核心 2022年第8期450-455,共6页 Computer Simulation
关键词 信号接收强度 指纹定位 属性加权 卡尔曼滤波 Received signal strength Fingerprint location Attribute weighting Kalman filter
  • 相关文献

参考文献5

二级参考文献37

  • 1肖玲,李仁发,罗娟.基于非度量多维标度的无线传感器网络节点定位算法[J].计算机研究与发展,2007,44(3):399-405. 被引量:38
  • 2Niculescu D, Nath B. Ad hoc positioning system (APS) using AOA [C]//Proc of the 22nd Annual Joint Conf of the IEEE Computer and Communications Societies. Piscataway, NJ: IEEE, 2003: 1734-1743. 被引量:1
  • 3Zhang Y W, Brown A K, Malik W Q, et al. High resolution 3-D angle of arrival determination for indoor UWB muhipath propagation [J].IEEE Trans on Wireless Communications, 2008, 7(8) : 3047-3055. 被引量:1
  • 4Llombart M, Ciurana M, Barcelo-Arroyo F. On the scalability of a novel WLAN positioning system based on time of arrival measurements [C] //Proc of the 5th Workshop on Positioning, Navigation and Communication. Piscataway, NJ: IEEE, 2008: 15-21. 被引量:1
  • 5Han D, Andersen D, Kaminsky M, et al. Access point localization using local signal strength gradient [C]//Passive and Active Network Measurement. Berlin: Springer, 2009: 99-108. 被引量:1
  • 6Bahl P, Padmanabhan V N. RADAR: An in building RF based user location and tracking system [C]//Proc of the 19th Annual Joint Conf of the IEEE Computer and Communications Societies (INFOCOM 2000). Piscataway. NJ: IEEE, 2000:775-784. 被引量:1
  • 7Gumuskaya H, Hakkoymaz H. WiPoD wireless positioning system based on 802. 11 WLAN infrastructure [J]. Enformatika, 2005, 8(9): 126-130. 被引量:1
  • 8Patel S, Truong K, Abowd G. PowerLine positioning: A practical sub-room-level indoor location system for domestic use [C]//Proc of UbiComp 2006. Berlin: Springer, 2006: 441-458. 被引量:1
  • 9Park J G, Charrow B, Curtis D, et al. Growing an organic indoor location system [C]//Proc of MobiSys'10. New York: ACM, 2010:271-283. 被引量:1
  • 10Castro P, Chiu P, Kremenek T, et al. A probabilistic room location service for wireless networked environments [C] // Proc of UbiComp 2001. Berlin: Springer, 2001 : 18-34. 被引量:1

共引文献63

同被引文献30

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部