期刊文献+

室内区域性WiFi定位EKNN算法设计 被引量:4

Design of EKNN Algorithm for Regional WiFi Localization
下载PDF
导出
摘要 WiFi由于应用广泛而被作为室内定位的热门技术之一,而定位精度与速度向来是研究的焦点.文中针对室内感兴趣区域(ROI)的定位问题,提出了一种证据理论K近邻(EKNN)算法.首先以接收信号强度指示作为指纹,在各区域分别建立无线指纹数据库作为识别的类;然后利用证据理论在各类别内进行近邻证据组合、类别间进行证据融合;最后确定目标所在ROI类,并在类中进行精定位.与其他算法相比,文中设计的EKNN算法的最佳区域类识别率可以达到97%,最大定位误差约为2.2 m,定位效率也有较大提高. Since WiFi is widely used,it is selected as one of the popular technologies for indoor positioning. The positioning accuracy and speed have always been hot research issues. In this paper,an evidence K-nearest neighbor( EKNN) algorithm is proposed for the localization of the region of interest( ROI). In the algorithm,first,by taking a received signal strength indicator as the fingerprint,a wireless fingerprint database is established as a recognition class in each region. Then,based on the evidence theory,the neighbor evidences within each class are combined and the combined results among the classes are fused. Finally,the ROI class of the target is determined,and a precise positioning is performed within this class. As compared with other algorithms,the EKNN algorithm can achieve a recognition rate of 97% at best and a maximum positioning error of about 2. 2 meters as well as a great positioning efficiency improvement.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第10期87-92,99,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61471174) 广州市科技计划项目(2014J4100247) 华南理工大学兴华人才项目(J2RS-D6161650)~~
关键词 WiFi定位 感兴趣区域 证据理论K近邻算法 无线指纹类数据库 接收信号强度指示 WiFi positioning region of interest evidence K-nearest neighbor wireless fingerprint database received signal strength indication
  • 相关文献

参考文献4

二级参考文献30

  • 1王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:144
  • 2Smarandache F and Dezert J. Advances and Applications of DSmT for Information Fusion: Vol 3[M]. USA: American Research Press, 2009: 54-58. 被引量:1
  • 3Li X, Dezert J, Smarandache F, et al.. Combination of qualitative information with 2-Tuple Linguistic Representation in DSmT[J]. Journal of Computer Science and Technology, 2009, 24(4): 786-798. 被引量:1
  • 4Li X, Dai X, Dezert J, et al.. Fusion of imprecise qualitative information[J]. Applied Intelligence, 2010, 33(3): 340-351. 被引量:1
  • 5Li X, Huang X, Dezert J, et al.. A successful application of DSmT in sonar grid map building and comparison with DST-based approach[J]. International Journal of Innovative Computing, Information and Control, 2007, 3(3): 539-551. 被引量:1
  • 6Li X, Jean D, Smarandache F, et al.. Evidence supporting measure of similarity for reducing the complexity in information fusion[J]. Information Sciences, 2011, 181(10): 1818-1835. 被引量:1
  • 7HU X, SHANG J, GU F, et al. Improving Wi-Fi indoor positioning via AP sets similarity and semi-supervised affinity propagation clustering[J]. International Journal of Distributed Sensor Networks, 2015, 2015: 1. 被引量:1
  • 8FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976. 被引量:1
  • 9Wikipedia Media. Precision and recall [EB/OL]. [2015-08-12]. http://en.wikipedia.org/wiki/Precision_and_recall. 被引量:1
  • 10JIANG Y, PAN X, LI K, et al. Ariel: Automatic Wi-Fi based room fingerprinting for indoor localization[C]//Proceedings of the 2012 ACM Conference on Ubiquitous Computing. New York: ACM, 2012: 441-450. 被引量:1

共引文献55

同被引文献37

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部