期刊文献+

基于知识库的制造业能耗优化平台技术研究 被引量:1

Research on manufacturing energy consumption optimization platform technology based on knowledge-base
下载PDF
导出
摘要 我国制造业在经济比重、规模巨大,企业通过数字化技术逐步实现制造企业能耗优化具有现实意义。以汽车制造为例,提出了基于知识库实现能耗优化的方案,包括制造业能耗的特点分析、能耗优化的关键技术及应用实践呈现。从企业生产设备入手,通过企业制造执行系统信息及设备运行状态寻找影响能耗的规律、构建知识库,并通过神经网络、关联分析等机器学习算法,实现能耗优化。 China’s manufacturing industry accounts for the largest proportion of the economy and involves a huge scale.It is of practical significance for enterprises to gradually realize energy consumption optimization through digi-tal technology.Taking automobile manufacturing as an example,a scheme of energy consumption optimization based on knowledge-base was proposed,including the analysis of the characteristics of energy consumption in manufactur-ing industry,the key technologies of energy consumption optimization and the presentation of application practice.Starting with the production equipment of the enterprise,the law affecting energy consumption was found and a knowledge-base was build through the information of manufacturing execution system and equipment operation sta-tus of the enterprise,and the optimization of energy consumption was realized through machine learning algorithms such as neural network and correlation analysis.
作者 杨伟伟 王思宁 郑贵德 宋亚琼 YANG Weiwei;WANG Sining;ZHENG Guide;SONG Yaqiong(General Data Technology Co.,Ltd.,Tianjin 200384,China;Beijing China-Power Information Technology Co.,Ltd.,Beijing 100192,China;Chinese Society for Electrical Engineering,Beijing 100761,China)
出处 《电信科学》 2022年第8期178-185,共8页 Telecommunications Science
关键词 能耗优化 知识库 节能智慧平台 energy consumption optimization knowledge-base energy saving intelligent platform
  • 相关文献

参考文献17

二级参考文献128

  • 1邓丰义,刘震宇.基于模式矩阵的FP-growth改进算法[J].厦门大学学报(自然科学版),2005,44(5):629-633. 被引量:17
  • 2李超,余昭平.基于矩阵的Apriori算法改进[J].计算机工程,2006,32(23):68-69. 被引量:43
  • 3焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996.. 被引量:115
  • 4[2]Dayhoff J E,Deleo J M.Artificial neural networks[J].Cancer,2001,9l(8):1615-1634. 被引量:1
  • 5Li Haifeng,Jiang Tao,Zhang Keshu.Efficient and Robust Feature Extraction by Maximum Margin Criterion[J].IEEE Transactions on Neural Networks.2006,17(1):157-165. 被引量:1
  • 6Lanckriet G R G,Ghaoui L E,Bhattacharyya C,et al.A Robust Minimax Approach to Classification[J].The Journal of Machine Learning Research,2002,25(3): 555-582. 被引量:1
  • 7Blake C L,Merz C J.UCI Repository of Machine Learning Databases[EB/OL].(1998-05-01).http://www.ics.uci.edu/mlearn/ MLRepository.html. 被引量:1
  • 8Hettich S,Bay S D.KDD CUP 1999 Data[EB/OL].(1999-10-28).http://kdd.ics.uci.edu/databases/kddcup99/kddcup.html. 被引量:1
  • 9王柏盛,刘寒冰,靳书和,马丽艳.基于矩阵的关联规则挖掘算法[J].微计算机信息,2007,23(05X):144-145. 被引量:18
  • 10McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc 11/tech/final_files/McCullough.pdf. 被引量:1

共引文献1257

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部