期刊文献+

光子太赫兹通信技术 被引量:4

Terahertz photonic communication technologies
下载PDF
导出
摘要 随着无线数据传输速率需求的爆炸式增长,太赫兹频段(0.1~10 THz)以其丰富的频谱资源备受关注。太赫兹光子学的通信技术因具有超宽带、调制效率高、谐波干扰小等技术优势,被公认可以极大地促进数据传输速率向Tbit/s发展。本文以光子太赫兹通信3个方面关键技术的综述分析为基础,包括光子太赫兹通信的收发器件、基带信号处理技术、系统架构与实验验证等,探讨光子太赫兹通信技术的发展趋势,并从宏观与微观尺度展望光子太赫兹通信的潜在应用场景。 With the explosive growth of wireless data rate,the terahertz band(0.1~10 THz)has attracted increasing attention due to its rich frequency resources.The terahertz photonic communication technology has advantages such as broadband,high modulation efficiency and low harmonic distortions.It is expected to greatly promote the wireless transmission data rate toward the Tbit/s level.Based on the review of the key technologies for realizing ultra-high-rate terahertz photonic communication,including terahertz communication transceivers,digital baseband signal processing technologies,terahertz photonic communication system architectures and experimental demonstrations,the future development trends of the terahertz photonic communication technologies are discussed.The application scenarios of terahertz photonic technology from the micro to macro scales are also analyzed.
作者 邓秋卓 张红旗 张鹿 余显斌 DENG Qiuzhuo;ZHANG Hongqi;ZHANG Lu;YU Xianbin(College of Information Science and Electronic Engineering,Zhejiang University,Hangzhou Zhejiang 310027,China)
出处 《太赫兹科学与电子信息学报》 2022年第8期790-803,共14页 Journal of Terahertz Science and Electronic Information Technology
基金 国家重点研发计划资助项目(2020YFB1805700)。
关键词 太赫兹通信 太赫兹光子学 太赫兹收发机 基带信号处理 terahertz communications terahertz photonics terahertz transceiver baseband signal processing
  • 相关文献

参考文献15

二级参考文献120

  • 1XU Jingzhou, ZHANG Cunlin and ZHANG Xicheng(1. Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA,2. Department of Physics, Capital Normal University, Beijing 100037, China).Recent progress in terahertz science and technology[J].Progress in Natural Science:Materials International,2002,12(10):729-736. 被引量:37
  • 2周泽魁,张同军,张光新.太赫兹波科学与技术[J].自动化仪表,2006,27(3):1-6. 被引量:17
  • 3曹俊诚.太赫兹半导体探测器研究进展[J].物理,2006,35(11):953-956. 被引量:17
  • 4M. Tonouchi, Nat. Photon. 1, 97 (2007). 被引量:1
  • 5R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002). 被引量:1
  • 6S. Kumar, IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011). 被引量:1
  • 7J. C. Cao, H. Li, Y. J. Han, Z. Y. Tan, J. T. Lii, H. Luo, S. Laframboise, and H. C. Liu, Chin. Phys. Lett. 25, 953 (2008). 被引量:1
  • 8S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 143510 (2007). 被引量:1
  • 9P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Man- quest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, Opt. Express 18, 20799 (2010). 被引量:1
  • 10R. Martini and E. A. Whittaker, J. Opt. Fiber Commun. Rep. 2, 279 (2005). 被引量:1

共引文献180

同被引文献70

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部