期刊文献+

火电机组多能级系统泄漏智能在线监测系统的应用研究 被引量:4

Applied Research on Intelligent Online Leakage Monitoring System for Multi-level System of Thermal Power Unit
原文传递
导出
摘要 针对当前火电机组热力系统间泄漏状况主要依靠人工监测,隐蔽泄漏不易被发现,易导致机组能耗无谓升高,影响机组运行的安全性及经济性的情况,提出基于模糊C均值聚类算法对系统运行数据进行挖掘,并将相关数据划分为正常状态或泄漏状态两类区域;再通过加动量误差反向传播(BP,back propagation)神经网络对系统实时表征参数进行分类。设计了火电机组多能级系统泄漏智能在线监测系统,在实际应用中该监测系统所监测火电机组热力系统的范围包含锅炉疏放水系统、高低压旁路系统等,涉及隔离界面150个以上。统计结果显示:监测成功率达81.8%,监测结果更加可靠。 At present,the leakage condition in thermal systems of thermal power units mainly depends on manual monitoring,but much hidden leakage is usually not easy to be detected,which leads to unnecessary increase of unit energy consumption and affects the safety and economy of unit operation.Based on the fuzzy C-means clustering algorithm,the system operation data is mined,and relevant data is divided into two types of areas concerning normal state or leakage state.Then the real-time characterization parameters of the system are classified by the momentum error back propagation(BP)neural network.An intelligent online leakage monitoring system for multi-level system of thermal power unit is designed,the thermal systems monitored by the monitoring system include boiler drainage system,high-low pressure bypass system,etc.in the practical application,involving more than 150 isolation interfaces.The statistical results show that the monitoring success rate is 81.8%and the monitoring result is more reliable.
作者 刘建东 丁启磊 张勇 LIU Jian-dong;DING Qi-lei;ZHANG Yong(Jianbi Power Plant of CHN Energy,Zhenjiang,China,Post Code:212006)
出处 《热能动力工程》 CAS CSCD 北大核心 2022年第7期27-33,共7页 Journal of Engineering for Thermal Energy and Power
关键词 泄漏监测 模糊C均值聚类 BP神经网络 火电机组 leakage monitoring fuzzy C-means clustering BP neural network thermal power unit
  • 相关文献

参考文献7

二级参考文献68

共引文献481

同被引文献46

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部