期刊文献+

多特征融合的突发公共卫生事件潜在谣言传播者识别 被引量:9

Detection of Potential Rumor Spreaders in Public Health Emergencies Based on Multi-Feature Fusion
原文传递
导出
摘要 [目的/意义]突发公共卫生事件中谣言的迅速传播可能会引发群体性的焦虑和恐慌,识别社交媒体中潜在的谣言传播者,研究及评估影响谣言传播者识别的重要特征,为舆情管控和网络治理提供策略。[方法/过程]提出一种突发公共卫生事件情景下多特征融合的潜在谣言传播者识别模型,首先基于BERT-BiLSTM模型提取微博的语义特征,然后与用户特征、微博特征以及情感特征进行融合,最后基于LightGBM算法构建用户分类模型,并利用SHAP值对模型进行分析。[结果/结论]研究结果表明,融合多特征的突发公共卫生事件谣言传播者识别模型在微博数据集上的准确率能够达到87.94%,说明该模型具有较好的识别效果,提出的4个维度的特征对谣言传播者识别均有贡献,其中文本语义特征对谣言传播者识别准确率的提升最高。 [Purpose/Significance]In public health emergencies,the rapid spread of rumors may cause mass anxiety and panic.This study aims to detect potential rumor spreaders in social media,explore and evaluate the important characteristics affecting rumor spreader identification,and provide strategies for public opinion control and network governance.[Method/Process]This study proposed a detection model for potential rumor spreaders based on multi-feature fusion in the context of public health emergencies.Firstly,the semantic features of Weibo were extracted by the BERT-BiLSTM model,and then fused with user features,Weibo features and emotion features.Finally,the user classification model was constructed based on LightGBM algorithm,and the model was explained by SHAP value.[Result/Conclusion]The experimental results show that the accuracy rate of the fusion multi-feature rumor spreader identification model for public health emergencies can reach 87.94%on the Weibo data set,indicating that the model has good detection effect.Moreover,the features of four dimensional proposed in this paper contribute to rumor spreader identification,and the text semantic features have the highest improvement in the accuracy of rumor spreader identification.
作者 曾子明 张瑜 李婷婷 Zeng Ziming;Zhang Yu;Li Tingting(School of Information Management,Wuhan University,Wuhan 430072)
出处 《图书情报工作》 CSSCI 北大核心 2022年第13期80-90,共11页 Library and Information Service
基金 国家社会科学基金项目"面向突发公共卫生事件的网络舆情时空演化与决策支持研究"(项目编号:21BTQ046)研究成果之一。
关键词 谣言传播者 特征融合 LightGBM模型 SHAP值 rumor spreaders feature fusion LightGBM model SHAP value
  • 相关文献

参考文献7

二级参考文献38

  • 1夏松,林荣蓉,刘勘.网络谣言敏感词库的构建研究——以新浪微博谣言为例[J].知识管理论坛,2019(5):267-275. 被引量:6
  • 2林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 3Tsou Benjamin K Y, Kwong O Y, Wong W L. Sentiment and content analysis of Chinese news coverage [ J ]. International Journal of Computer Processing of Oriental Languages, 2005, 18(2) : 171-183. 被引量:1
  • 4Ekman P. Facial expression and emotion [ J]. Americam Psychologist, 1993, 48:384-392. 被引量:1
  • 5Yu Zhang, zhuoming Li, Fuji Ren, Shingo Kuroiwa. Semiautomatic emotion recognition from textual input based on the constructed emotion thesaurus[ C]. Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE' 05). 2005 : 571-576. 被引量:1
  • 6许小颖,陶建华.汉语情感系统中情感划分的研究[C].第一届中国情感计算及智能交互学术会议论文集.2003:199-205. 被引量:7
  • 7Ekman P. An argument for basic emotions [ J]. Cognition and Emotion, 1992, 6: 169-200. 被引量:1
  • 8郑怀德,孟庆海.汉语形容词用法词典[M].北京:商务印书馆,2004. 被引量:2
  • 9Hugo Liu, Henry Lieberman, Ted Selker. A model of textual affect sensing using real-world knowledge [ C ] .Proceedings of the 8th International Conference on Intelligent User Interfaces. 2003: 125-132. 被引量:1
  • 10Hugo Liu, Ted Selker, Henry Lieberman. Visualizing the affective structure of a text document [ C ].Proceedings of Conference on Human Factors in Computing Systems. 2003 : 740-741. 被引量:1

共引文献491

同被引文献270

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部