摘要
土壤湿度是地球系统模拟的重要参数之一,准确获得其时空分布和变化特征是研究陆-气相互作用的基础。再分析资料和陆面数据同化资料均可提供全球或区域高分辨率土壤湿度产品,但在使用前需要对其进行评估分析。利用土壤湿度观测数据,计算ERA5、ERA5-Land、NCEP-DOE R2、CRA40再分析资料和GLDAS-Noah、GLDAS-CLSM、CLDAS陆面数据同化资料土壤湿度产品与观测数据的中位数、模拟偏差、相关系数等统计指标,并分季节和气候区讨论不同土壤湿度产品在中国北方地区的模拟效果。结果表明:整体来看,CRA40与观测值的相关性最好,ERA5和ERA5-Land分别对干中心、湿中心模拟效果更好,GLDAS-Noah对于较干土壤地区模拟略偏湿,CLDAS对较湿土壤地区模拟结果以系统性偏干为主,NCEP-DOE R2和GLDAS-CLSM模拟效果较差;ERA5、ERA5-Land、NCEP-DOE R2、GLDAS-Noah和CLDAS在所有季节均为模拟正偏差,春季模拟效果较好的是CRA40、ERA5-Land,夏季和秋季ERA5-Land、ERA5和CRA40与观测值相关性较好,不同产品模拟的冬季土壤湿度和观测值相关性是全年中最小的;不同土壤湿度产品在干旱区以模拟偏湿为主,GLDAS-Noah模拟效果最佳,但模拟土壤湿度峰值和谷值的出现时间较观测较早,GLDAS-Noah、CRA40、ERA5能较好模拟季风区干、湿土壤的持续时段和土壤湿度变化振幅,大部分产品能模拟出夏季风影响过渡区较干土壤和较湿土壤的出现时间。
The accurate spatial-temporal distribution of soil moisture,which is one of the important parameters of the Earth System Simulation,is the basis for land-atmosphere interaction.Both reanalysis data and the land data assimilation system(LDAS)can provide global or regional high-resolution soil moisture products.However,validation of the simulation data is required before application.In this study,the fidelity of soil moisture products,including four reanalyzed soil moisture products(ERA5,ERA5-Land,NCEP-DOE R2 and CRA40)and three LDAS soil moisture products(GLDAS-Noah,GLDAS-CLSM and CLDAS)are examined using the in situ datasets via several statistical indexes(e.g.,median,deviation,and correlation coefficient)in northern China.The results show that CRA40 achieves the best correlation with observations,while ERA5 and ERA5-Land respectively provide better simulation for dry and wet centers.In addition,GLDAS-Noah shows a slightly positive bias for drier soil areas,and CLDAS presents a negative bias for wet soil areas.In general,NCEP-DOE R2 and GLDAS-CLSM exhibit poor simulation in northern China.ERA5-Land,ERA5-Land,NCEP-DOE R2,GLDAS-Noah and CLDAS show simulated positive bias in all seasons.The better simulation results in spring are CRA40 and ERA5-Land,along with ERA5-Land,ERA5 and CRA40 in summer and autumn.In winter,the correlation between the soil moisture simulated by different products and the observed value is the smallest throughout the year.In arid regions,different soil moisture products exhibited positive deviations,with the GLDAS-Noah simulation being the best,but the peak and valley values of soil moisture in the simulated products appeared earlier than observed.GLDAS-Noah,CRA40 and ERA5 can more effectively simulate the duration of dry and wet soils and the amplitude of soil moisture changes in the monsoon region.Most of the products can simulate the occurrence of drier soils and wetter soils in the transition zone that is affected by the summer monsoon.
作者
刘维成
徐丽丽
朱姜韬
段伯隆
孙义
郑涛
LIU Weicheng;XU Lili;ZHU Jiangtao;DUAN Bolong;SUN Yi;ZHENG Tao(Lanzhou Central Meteorological Observatory,Lanzhou 730020,China;College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China;Gansu Meteorological Bureau,Lanzhou 730020,China)
出处
《大气科学学报》
CSCD
北大核心
2022年第4期616-629,共14页
Transactions of Atmospheric Sciences
基金
国家自然科学基金资助项目(41505036)
甘肃省气象局气象科研项目人才专项(2122rczx-十人计划-01)
甘肃省气象局创新团队项目(GXQXCXTD-2020-01)。
关键词
土壤湿度
再分析
陆面数据同化
中国北方
soil moisture
reanalysis
land data assimilation system
North China