期刊文献+

Reducing bacterial adhesion to titanium surfaces using low intensity alternating electrical pulses

下载PDF
导出
摘要 BACKGROUND Orthopedic implant-related infection remains one of the most serious complications after orthopedic surgery.In recent years,there has been an increased scientific interest to improve prevention and treatment strategies.However,many of these strategies have focused on chemical measures.AIM To analyze the effect of alternating current electrical fields on bacterial adherence to titanium surfaces.METHODS Staphylococcus aureus(S.aureus)and Escherichia coli(E.coli)were exposed to 6.5 V electrical currents at different frequencies:0.5 Hz,0.1 Hz,and 0.05 Hz.After exposure,a bacterial count was then performed and compared to the control model.Other variables registered included the presence of electrocoagulation of the medium,electrode oxidation and/or corrosion,and changes in pH of the medium.RESULTS The most effective electrical model for reducing S.aureus adhesion was 6.5 V alternating current at 0.05 Hz achieving a 90%adhesion reduction rate.For E.coli,the 0.05 Hz frequency model also showed the most effective results with a 53%adhesion reduction rate,although these were significantly lower than S.aureus.Notable adhesion reduction rates were observed for S.aureus and E.coli in the studied conditions.However,the presence of electrode oxidation makes us presume these conditions are not optimal for in vivo use.CONCLUSION Although our findings suggest electrical currents may be useful in preventing bacterial adhesion to metal surfaces,further research using other electrical conditions must be examined to consider their use for in vivo trials.
出处 《World Journal of Orthopedics》 2022年第6期578-586,共9页 世界骨科杂志(英文版)
基金 the DIRECT project (Desarrollo de Nuevos Dispositivos Biomimé ticos Mejorados Superficialmente con Nuevos Recubrimientos y Tratamientos Físicos), which has been funded with a grant from the Centre for Development of Industrial Technology (CDTI)
  • 相关文献

参考文献1

二级参考文献87

  • 1[1]Costerton JW.Introduction to biofilm.Int J Antimicrob Agents 1999;11:217-21. 被引量:1
  • 2[2]Characklis WG.Marshal KC.Biofilms.New York:John Wiley and Sons:1990. 被引量:1
  • 3[3]Bakke R,Trulear MG,Robinson JA,et al.Activity of Pseudomonas aeruginosa in biofilms:steady state.Biotechnol Bioeng 1982;26:1418-24. 被引量:1
  • 4[4]Heydorn A,Ersboll B,Hentzer M,et al.Experimental reproducibility in flow-chamber biofilms.Microbiology 2000:146:2409-15. 被引量:1
  • 5[5]Shirtliff ME,Mader JT,Camper Ak Molecular interactions in biofilms.Chem Biol 2000;9:859-71. 被引量:1
  • 6[6]Costerton JW,Cheng KJ,Geesey GG,et al.Bacterial biofilms in nature and disease.Annu Rev Microbiol 1987;41:435-64. 被引量:1
  • 7[7]Dunne WM.Bacterial adhesion:seen any good biofilms lately?.Clin Microbiol Rev 2002:15:155-66. 被引量:1
  • 8[8]Goldberg J.Biofilms and antibiotic resistance:a genetic linkage.Trends Microbiol 2002:10:264. 被引量:1
  • 9[9]Peng JS,Tsai WC,Chou CC.Inactivation and removal of Bacillus cereus by sanitizer and detergent.Int J Food Microbiol 2002;77:11-8. 被引量:1
  • 10[10]chen MJ,Zhang Z,Bott TR.Direct measurement of the adhesive strength of biofilms in pipes by micromanipulation.Biotechnol Tech 1998;12:875-8O. 被引量:1

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部