期刊文献+

Engineering vacancy and hydrophobicity of two-dimensional TaTe_(2)for efficient and stable electrocatalytic N_(2)reduction 被引量:3

原文传递
导出
摘要 Demand for ammonia continues to increase to sustain the growing global population.The direct electrochemical N2 reduction reaction(NRR)powered by renewable electricity offers a promising carbon-neutral and sustainable strategy for manufacturing NH3,yet achieving this remains a grand challenge.Here,we report a synergistic strategy to promote ambient NRR for ammonia production by tuning the Te vacancies(VTe)and surface hydrophobicity of two-dimensional TaTe_(2)nanosheets.Remarkable NH3 faradic efficiency of up to 32.2%is attained at a mild overpotential,which is largely maintained even after 100 h of consecutive electrolysis.Isotopic labeling validates that the N atoms of formed NH4+originate from N2.In situ X-ray diffraction indicates preservation of the crystalline structure of TaTe_(2)during NRR.Further density functional theory calculations reveal that the potential-determining step(PDS)is*NH_(2)+(H^(+)+e^(-))/NH3 on VTe-TaTe_(2)compared with that of*+N2+(H^(+)+e^(-))/*N-NH on TaTe_(2).We identify that the edge plane of TaTe_(2)and VTe serve as the main active sites for NRR.The free energy change at PDS on VTe-TaTe_(2)is comparable with the values at the top of the NRR volcano plots on various transition metal surfaces.
出处 《The Innovation》 2022年第1期38-45,共8页 创新(英文)
基金 supported by the National Natural Science Foundation of China(no.21972010) Beijing Natural Science Foundation(no.2192039) the State Key Laboratory of Organic-Inorganic Composites(no.oic201901001) Beijing University of Chemical Technology(XK180301) NRF Korea(NRF-2016M3D1A1021147) the facilities of the DCCEM,at the Materials Department,Oxford(EP/R010145/1).
  • 相关文献

参考文献2

二级参考文献30

  • 1Bohr M T, Chau R S, Ghani T and Mistry K 2007 IEEE Spectrum 44 29. 被引量:1
  • 2Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699. 被引量:1
  • 3Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147. 被引量:1
  • 4Chaneliere C, Autran J L, Devine R A B and Balland B 1998 Mater. Sci. Eng. R. 22 269. 被引量:1
  • 5Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722. 被引量:1
  • 6Xu C, Yang S, Zhang S H, Niu J N, Qiang Y H, Liu J T and Li D W 2012 Chin. Phys. B 21 114213. 被引量:1
  • 7Kukli K, Ihanus J, Ritala M and Leskela M 1996Appl. Phys. Lett. 68 3737. 被引量:1
  • 8Dong X, Osada M, Ueda H, Ebina Y, Kotani Y, Ono K, Ueda S, Kobayashi K, Takada K and Sasaki T 2009 Chem. Mater. 21 4366. 被引量:1
  • 9Xu T G, Zhang C, Shao X, Wu K and Zhu Y F 2006Adv. Funct. Mater. 16 1599. 被引量:1
  • 10Osada M, Ebina Y, Takada K and Sasaki T 2006 Adv. Mater. 18 295. 被引量:1

共引文献1

同被引文献15

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部