期刊文献+

个性化新闻推荐技术研究 被引量:5

下载PDF
导出
摘要 随着互联网特别是移动互联网技术的飞速发展,用户可以浏览海量的新闻信息,但伴随丰富的新闻同时而来的还有信息过载问题。个性化新闻推荐系统应运而生,在合适的时间为用户推荐合适的新闻文章,帮助每个用户快速找到自己感兴趣的新闻。本文首先介绍了个性化新闻推荐技术的研究现状,然后分析了常用的四种方法,最后总结了常用数据集、评价指标和存在的难点问题。
作者 胡箐妍
出处 《中国传媒科技》 2022年第7期137-139,143,共4页 Media Science and Technology of China
  • 相关文献

参考文献5

二级参考文献31

  • 1中国互联网络信息中心.第34次中国互联网络发展状况统计报告[EB/OL].http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/,2014-07-21. 被引量:23
  • 2China Internet Network Information Center,The 34th statistical report on China Internet Development[EB/OL]. http://cn. chi_na-gate. cn/ reports/2014-07/23/ content33031944. html,2014. 被引量:1
  • 3Kyo-Joong Oh, Won-Jo Lee, Chae-Gyun Lim, et al. Personalized news recommendation using classified keywordsto capture user pref-erence[C].16th International Conference on Advanced Communication Technology,PyeongChang,Korea,2014. 被引量:1
  • 4Won-Jo Lee,Kyo-Joong OhtChae-Gyun Lim,et al. User profile extraction from Twitter for personalized newsrecommendation[C].16th International Conference on Advanced Communication Technology,PyeongChang, Korea,2014. 被引量:1
  • 5Lei Li, Li Zheng, Fan Yang, et al. Modeling and broadening temporal user interest in personalized news recommendation[J]. Expert Systems with Applications,2014,41(7):3168-3177. 被引量:1
  • 6Yunseok Noh,Yong Hwan Oh,Seong Bae Park. A location-based personalized news recommendation[C]. International Conference on Big Data Sc Smart Computing,2014. 被引量:1
  • 7Liu JjDolan P, Pedersen E R. Personalized news recommendation based on click behavior[C]. Proceedings of the 14th ACM International Conference on Intelligent User Interfaces,2010:31-40. 被引量:1
  • 8Cao Yi-ming. Research and implementation of personalized news recommendation system based on collaborative filtering[D]. Beijing: Beijing University of Posts and Telecommunications,2013. 被引量:1
  • 9Shani G, Heckerman D, Brafman R I. An MDP-based recommender system[J]. Journal of Machine Learning Research,2005,6(2):1265-1295. 被引量:1
  • 10Alain Pirotte, Jean Michel Renders, Marco Saerens. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation[J]. Knowledge and Data Engineering,2007,19(3):355-369. 被引量:1

共引文献28

同被引文献36

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部