期刊文献+

Surface science approach to the heterogeneous cycloaddition of CO_(2) to epoxides catalyzed by site-isolated metal complexes and single atoms: a review 被引量:1

原文传递
导出
摘要 The cycloaddition of CO_(2) to epoxides to afford cyclic organic carbonates is an increasingly relevant non-reductive strategy to convert CO_(2) to useful products able to serve as high-boiling solvents,chemical intermediates,and monomers for the preparation of more sustainable polymers.The development of efficient and robust hetero-geneous catalysts for such transformation is,therefore,crucial and can be carried out by several strategies that often require the preparation of sophisticated and/or expensive organic networks,linkers,or compounds.A different approach to the preparation of heterogeneous catalysts for CO_(2)-epoxide coupling is by applying surface science methodologies to graft molecular fragments or single atoms on various supports leading to well-defined active sites.In this context,surface organometallic chemistry(SOMC),along with comparable methodologies,is a valuable approach for the preparation of efficient,single-site Lewis acids and catalysts for the target cycloaddition reaction on metal oxides,whereas,other grafting methodologies,can be applied to prepare analogous catalysts on different kinds of surfaces.Finally,we discuss very recent advances in the application of surface methodologies for the preparation of single atom catalysts as an increasingly relevant approach towards highly active Lewis acids for the cycloaddition of CO_(2) to epoxides.Overall,we show that Lewis acids and catalysts prepared by facile surface methodologies hold significant potential for future application is the synthesis of cyclic carbonates from CO_(2).
出处 《Green Chemical Engineering》 2022年第3期210-227,共18页 绿色化学工程(英文)
基金 V.D.E.thanks the National Research Council of Thailand(NRCT)(grants Nos.N41A640170 and N42A650196) for funding this work.A.W.K.is grateful to Cerca program/Generalitat de Catalunya,ICREA,Ministerio de Ciencia e Innovacion(PID2020-112684GB-100 Severo Ochoa Excellence Accreditation 2020-2023 CEX2019-000925-S).
  • 相关文献

参考文献2

二级参考文献3

共引文献38

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部