期刊文献+

基于SLPP和CHMM的轴承健康评估与预测研究 被引量:1

Bearing Health Assessment and Prediction by Supervised Local Preserving Projection and Coupled Hidden Markov Model
原文传递
导出
摘要 为了更加有效地评估和预测轴承健康状态,更早地发现轴承异常,提出了一种基于有监督局部保持投影(SLPP)和耦合隐马尔可夫模型(CHMM)的轴承健康评估与预测方法.首先,针对轴承信号特点,选择11个时域和频域特征进行提取;其次,利用SLPP方法对提取的高维特征进行高质量特征约减;最后,结合CHMM获取性能指标并对轴承健康状态进行评估和预测.通过轴承全寿命加速疲劳实验分析表明,该方法能够对轴承健康状态进行准确而有效的评估预测;在特征约减效果上,与PCA相比,SLPP刻画轴承状态变化过程的能力明显更强;在评估效果上,与HMM相比,CHMM能更早地发现轴承异常. A methodology based on supervised local preserving projection(SLPP)and coupled hidden Markov model(CHMM)was presented in order to effectively assess and forecast the degradation of bearing performance and to find abnormal bearing as soon as possible.At first,eleven characteristics of time domain and frequency domain were extracted according to the characteristics of bearing signals.And then high-dimensional feature was converted to low dimensional space using SLPP.At last,the pre-trained CHMM was employed to assess and predict the performance degradation of bearings quantitatively.A bearing accelerated life experiment was performed to validate the feasibility and validity of proposed method.In terms of feature reduction effect,SLPP has significantly stronger ability to describe bearing degradation process than PCA.In the evaluation effect,CHMM can detect bearing abnormalities earlier than HMM.
作者 陈庆 刘韬 伍星 CHEN Qing;LIU Tao;WU Xing(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China;Yunnan Vocational College of Mechanical and Electrical Technology,Kunming 650201,China)
出处 《昆明理工大学学报(自然科学版)》 北大核心 2022年第3期67-74,共8页 Journal of Kunming University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(52065030,51875272) 云南省重点研发计划项目(202102AC080002XX)。
关键词 轴承 机械故障诊断 健康评估与预测 有监督局部保持投影 耦合隐马尔可夫模型 bearing mechanical fault diagnosis health assessment and prediction supervised local preserving projection(SLPP) coupled hidden Markov model(CHMM)
  • 相关文献

参考文献2

二级参考文献25

  • 1Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323 被引量:1
  • 2Roweis S T, Saul I. K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290 (5500) : 2323- 2326 被引量:1
  • 3He Xiaofen, Niyogi P. Locality Preserving Projections//Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004, 16: 153-160 被引量:1
  • 4Jolloffe I T. Principal Component Analysis. New York, USA: Springer-Verlag, 1986 被引量:1
  • 5Fisher R A. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 1936, 7(2): 179-188 被引量:1
  • 6Fukunaga K. Introduction to Statistical Pattern Recognition. 2nd Edition. Boston, USA: Academic Press, 1990 被引量:1
  • 7Sugiyama M. Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction//Proc of the 23rd International Conference on Machine Learning. Pittsburgh, USA, 2006:905-912 被引量:1
  • 8Belkin M, Niyogi P. I,aplacian Eigenmaps and Spectral Techniques for Embedding and Clustering // Dietterich T G, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2001, 14: 585-591 被引量:1
  • 9Vapnik V N. Statistical Learning Theory. New York, USA: Wiley, 1998 被引量:1
  • 10Scholkopf B, Smola A J, Muller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5): 1299-1319 被引量:1

共引文献35

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部