期刊文献+

基于Morlet-Maxican Hat小波神经网络的水电工程短期电价预测研究 被引量:2

Forecast of Short-term Electricity Price of Construction Engineering Based on Grey Wavelet Neural Network
下载PDF
导出
摘要 为适应我国电力交易市场化改革战略,提出准确适用的电价预测方法能够有效规避交易市场风险以达到经济效应最大化。本文基于水电工程电力消耗特征,考虑影响水电工程电价影响因素,采用灰色关联度评价方法确定重要预测特征,基于小波神经网络构建水电工程短期电价预测算法。运用MATLAB软件针对算例数据仿真求解,预测水电工程短期电价。结果表明,本文提出的水电工程短期电价预测算法能够有效的泛化水电工程特征影响因素,与传统模型相比具有较高的预测精度。 To adapt to the market-oriented reform strategy of China's electricity trading,an accurate and applicable electricity price forecasting method is proposed to effectively avoid trading market risks to maximize economic effects.Based on the power consumption characteristics of construction projects,this paper considers the factors affecting the electricity price of construction projects,adopts the gray correlation evaluation method to determine the important forecasting characteristics,and builds short-term electricity price forecasting algorithms for construction projects based on wavelet neural network.Use MATLAB software to simulate and solve the calculation example data to predict the short-term electricity price of construction projects.The results show that the short-term electricity price prediction algorithm for construction projects proposed in this paper can effectively generalize the influencing factors of construction engineering characteristics,and has higher prediction accuracy compared with traditional models.
作者 周理翔 ZHOU Li-xiang(Shanghai Survey and Design Research Institute Co.,Ltd.,Shanghai 200335,China)
出处 《价值工程》 2022年第21期29-33,共5页 Value Engineering
关键词 水电工程 电价预测 模糊理论 小波神经网络 construction engineering electricity price forecast fuzzy theory wavelet neural network
  • 相关文献

参考文献6

二级参考文献44

  • 1卢敏,张展羽,冯宝平.支持向量机在径流预报中的应用探讨[J].人民长江,2005,36(8):38-39. 被引量:24
  • 2张显,王锡凡,陈芳华,叶斌,陈皓勇.分时段短期电价预测[J].中国电机工程学报,2005,25(15):1-6. 被引量:60
  • 3林剑艺,程春田.支持向量机在中长期径流预报中的应用[J].水利学报,2006,37(6):681-686. 被引量:114
  • 4虞和济.基于神经网络的智能诊断[M].北京:冶金工业出版社,2002.. 被引量:43
  • 5Li Z Y, Zhou Y L, Cheng C, et al. Short term photovoltaic power generation forecasting using RBF neural network[C]//26th Chinese Control and Decision Conference. Changsha, China: IEEE Control Systems Society, 2014: 2758-2763. 被引量:1
  • 6Kaplanis S, Kaplani E. A model to predict expected mean and stochastic hourly global solar radiation I(h; n(j)) values[J]. Renewable Energy, 2007, 32(8): 1414-1425. 被引量:1
  • 7Lorenz E, Hurka J, Heinemann D, et al. Irradiance forecasting for the power prediction of grid-connected photovoltaic systems[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(1): 2-10. 被引量:1
  • 8Li Y T, Su Y, Shu L J. An ARMAX model for forecasting the power output of a grid connected photovoltaic system[J]. Renewable Energy, 2014(66): 78-89. 被引量:1
  • 9Yazdanbaksh O, Krahn A, Dick S. Predicting solar power output using complex fuzzy logie[C]//Joint IFSA World Congress and NAFIPS Annual Meeting. Edmonton: IFSA World Congress and NAFIPS AnnualMeeting, 2013: 1243-1248. 被引量:1
  • 10中国气象局.GB/T22164-2008公共气象服务一天气图形符号[S].北京:中国标准出版社,2008. 被引量:1

共引文献139

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部