摘要
Doping can change the band structure of semiconductors,thereby affecting their electrical,optical,and magnetic properties.In this study,we describe the synthesis of two-dimensional(2D)Se-doped Cr_(2)S_(3)(Se-Cr_(2)S_(3))nanosheets using the chemical vapor deposition method.In these semiconductor nanosheets,the Se doping concentration can be controlled by tuning the Se/S mass ratio in the precursor.At the doping concentrations of 10.05%and 2.05%,the room temperature conductivity and mobility were increased by nearly 4 and 2 orders of magnitude,respectively.In addition,the response time of an ultrathin Se-Cr_(2)S_(3)photodetector was 200 times shorter than that of an undoped Cr_(2)S_(3)nanosheet photodetector.4.07%-Se-Cr_(2)S_(3)nanosheets show ferrimagnetic behavior with a Curie temperature of~200 K,which is 80 K higher than that of undoped Cr_(2)S_(3)nanosheets.A density functional theory calculation indicated that the Se doping can induce the formation of intercalated Cr vacancies in SeCr_(2)S_(3)and enhance its metallic characteristics.Our results demonstrated that Se-Cr_(2)S_(3)has significant potential in future electronic,optoelectronic,and spintronic devices.
基金
supported by the National Natural Science Foundation of China(Grant Nos.51872086,62174051,51991340,and 51991343)
the Natural Science Foundation of Hunan Province(Grant No.2020JJ1001)
the Hunan Province“Huxiang Talents”Project(Grant No.2021RC3038)
the Double First-Class Initiative of Hunan University(Grant No.531109100004)
the Shenzhen Basic Research Project(Grant No.JCYJ20210324142012035)。