期刊文献+

Tuning bandstructure of folded MoS_(2) through fluid dynamics 被引量:1

原文传递
导出
摘要 The variation of interlayer coupling can greatly affect the bandstructure of few layered transition metal dichalcogenides(TMDs),for instance,transition of indirect-to-direct bandgap and vice versa,which is correlated with the charge carrier and optical density.However,methods that can modulate the coupling strength in a controllable way are still lacking.Here,we report a fluidic dynamic strategy to tune the interlayer coupling of folded bi-layer MoS_(2).By controlling the flow direction and particle size of the fluid,mono-layer MoS_(2)can be folded into bi-layer with a controlled folding direction for designated twist angles as well as tunable interlayer coupling.Compared with normally folded bi-layer MoS_(2),the photoluminescence(PL)peak of the direct-bandgap transition for folded bi-layer MoS_(2)by fluid flow is weakened accompanied with the re-appearance of indirect-bandgap transition peak.Besides,the fluid flow creates a clear trajectory on the folded MoS_(2),exhibiting various degrees of interlayer coupling along it.Field-effect transistors(FETs)were further fabricated on tunably coupled folded-bi-layers,proving that the bandstructure and electrical property is strongly correlated with the degree of interlayer coupling.This fluidic dynamic strategy can be extended to other TMDs on any substrate,and together with its excellent capability in controlled interlayer coupling,it will provide a new way for the development of TMDs optoelectronics.
出处 《Nano Research》 SCIE EI CSCD 2022年第3期2734-2740,共7页 纳米研究(英文版)
基金 National Natural Science Foundation of China(Nos.21903007 and 22072006) Young Thousand Talents Program(No.110532103) Beijing Normal University Startup funding(No.312232102) the Fundamental Research Funds for the Central Universities(No.310421109) Double First Class General Science and Technology Projects from School of Chemistry and Chemical Engineering,Shihezi University(No.SHYL-YB201903).
  • 相关文献

参考文献2

二级参考文献3

共引文献11

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部