期刊文献+

Cahn-Hilliard-Oono方程Xα解的存在性

Existence of X^(α) Solution for Cahn-Hilliard-Oono Equation
下载PDF
导出
摘要 研究Cahn-Hilliard-Oono方程解的存在性问题.首先利用扇形算子理论及抽象Cauchy问题解的存在性定理得到Cahn-Hilliard-Oono方程X^(α)解的存在性,然后得到Cahn-Hilliard-Oono方程整体X^(α)解的存在性,最后考虑Cahn-Hilliard-Oono方程非线性项的推广问题,得到推广方程解的H^(2)范数估计. In this paper,we studied the existence of solutions for Cahn-Hilliard-Oono equation.Firstly,the existence of X^(α) solution of Cahn-Hilliard-Oono equation was obtained by using the theory of sector operator and the existence theorem of abstract Cauchy problem.Secondly,the existence of global X^(α) solution of Cahn-Hilliard-Oono equation was obtained.Finally,the H^(2) norm estimate of the solution for the generalized equation is obtained.
作者 黄梅 蒲志林 任运平 HUANG Mei;PU Zhilin;REN Yunping(School of Mathematical Sciences,Sichuan Normal University,Chengdu 610066,Sichuan)
出处 《四川师范大学学报(自然科学版)》 CAS 2022年第4期470-476,共7页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11571245)。
关键词 CAHN-HILLIARD方程 Cahn-Hilliard-Oono方程 局部X^(α)解 全局X^(α)解 Cahn-Hilliard equation Cahn-Hilliard-Oono equation Local X^(α) solution Global X^(α) solution
  • 相关文献

参考文献1

二级参考文献7

  • 1王碧祥,王守田.Cahn─Hilliard方程的近似惯性流形[J].兰州大学学报(自然科学版),1994,30(3):1-5. 被引量:2
  • 2Foias C,Sell G R,Teman R.Varites inertills des equations differentielles dissipatives[J].C R Acad Sci Paris Ser 1 Math,1985,301:139~142. 被引量:1
  • 3Foias C,Manley O,Temam R.Sur I'interaction des petits et grands tourillions dans less ecoulements turblents[J].C R Acad Sci Paris Ser I,1987,305:497~500. 被引量:1
  • 4Jolly M S,Kevrekidis I G,Titi E S.Approximate inertial manifolds for the Kuramoto-Sivashinsky equation:analysis and computation[J].Phys D,1990,44:38~60. 被引量:1
  • 5Titi E S.On approximate inertial manifolds to the Navier-Stokes equations[J].J Math Anal Appl,1990,49(2):540~556. 被引量:1
  • 6Marion M.Approximate inertial manifolds for the patterns formation Cahn-Hilliard equation[J].Math Model Numer Anal,1989,23:463~480. 被引量:1
  • 7Li D S,Zhong C K.Clobal attractor for the Cahn-Hilliard system with fast growing nonlinearity[J].J Diff Eqs,1998,149:191~210. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部