摘要
研究具有耗散性质的非自治Schr dinger方程ut-(λ+iα)Δu +( k +iβ) | u|2u -γu =f(t ,x) ,运用具有两个参数的算子簇———“过程”来描述此无穷维动力系统,构建了其近似惯性流形,进一步获得此近似惯性流形逼近方程一致吸引子的阶数的近似估计.
In this paper, the dissipative non-autonomous Schroedinger equation δu/δt-(λ+iα)Δu+(k+iβ)|u|^2-γu=f(t,x) is studied. Applying the process which describes the infinite dynamical system using the operator family of two parameters, the approximate inertial manlfolds(AIM) is constructed. Furthermore, the estimate of the order to the AIM which approachs the global attractor has been obtained.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第4期413-416,共4页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金预研基金
四川省教育厅重点科研基金资助项目