期刊文献+

采用改进YOLOv3的高分辨率遥感图像目标检测 被引量:16

Object detection of high resolution remote sensing images based on improved YOLOv3
下载PDF
导出
摘要 由于高分辨率遥感图像存在目标排列密集、尺寸差别大等情况,传统算法难以准确地对其进行目标检测。在YOLOv3算法的基础上,提出一种改进的高分辨率遥感图像目标检测算法(remote sensing-YOLO,RS-YOLO)。利用K-means聚类算法对数据集进行聚类,重新设计适合遥感图像的先验框;引入高斯模型计算预测框的不确定度,以提高网络对预测框坐标的准确度;使用弱化的非极大值抑制算法(soft non-aximum suppression,Soft-NMS)对预测框进行处理,增强算法对密集排列目标的检测能力。实验结果表明,改进后的算法能够对高分辨率遥感图像进行有效的目标检测,以NWPU VHR-10数据集为例,RS-YOLO的平均检测精度达到了87.97%。 Due to the dense arrangement of targets and the big difference of target sizes,it is difficult to detect objectives accurately in high-resolution remote sensing images by traditional algorithms.An improved high-resolution remote sensing image object detection method(RS-YOLO)based on YOLOv3 algorithm is proposed.K-means algorithm is used to cluster data set and redesign the prior anchor box suitable for remote sensing image.Gaussian model is introduced to calculate the uncertainty information of bounding box to improve the accuracy of coordinates from the network.Soft-NMS algorithm is used to process the bounding box which enhance the detection ability for densely arranged targets.Experimental results show that the improved algorithm is effective in high-resolution remote sensing images object detection.In NWPU VHR-10 data set,the average detection precision of RS-YOLO reached 87.97%.
作者 夏英 黄秉坤 XIA Ying;HUANG Bingkun(School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2022年第3期383-392,共10页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(41871226) 重庆市基础与前沿研究计划项目(cstc2019jcyjmsxmX0131)。
关键词 深度学习 目标检测 高分辨率遥感图像 YOLOv3算法 高斯模型 deep learning object detection high resolution remote sensing image YOLOv3 algorithm Gaussian model
  • 相关文献

参考文献11

二级参考文献113

  • 1KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105. 被引量:1
  • 2DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42. 被引量:1
  • 3ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966. 被引量:1
  • 4BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473. 被引量:1
  • 5ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901. 被引量:1
  • 6SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229. 被引量:1
  • 7RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575. 被引量:1
  • 8LIN M,CHEN Q,YAN S.Network in network[J].CoRR,2013:abs/1312.4400. 被引量:1
  • 9SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1891-1898. 被引量:1
  • 10TAIGMAN Y,YANG M,RANZATO M A,et al.Deepface:closing the gap to human-level performance in face verification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1701-1708. 被引量:1

共引文献526

同被引文献76

引证文献16

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部