期刊文献+

基于学习风格模型的学生分组优化方法

Student Grouping Optimization Based on Learning Styles
下载PDF
导出
摘要 分组学习通过组内成员的交流与优势互补实现更高效的学习。但随机分组或指定分组很难全面考虑学习风格对学习效果的影响。本文应用Felder-Silverman学习风格模型表达学习者特征,以组内学习风格多样性和组间学习风格均衡性为目标,采用人工蜂群算法优化分组。对比固定分组,优化分组可有效兼顾组内多样性和组间公平性。通过对比小组任务和个人任务得分率,证实了优化的分组可提高学习效果。 Group learning achieves more efficient learning through the communications of members in the group and the complementary advantages.However,it isn′t easy to fully consider the influence of learning style on the learning effect in the form of random grouping or designated grouping.In this paper,the Felder-Silverman learning style model is used to represent learner characteristics.The objective is to maximize learning style diversity within groups and to balance average learning styles among groups.The artificial bee colony(ABC)algorithm is used to optimize grouping.Compared with fixed grouping,optimized grouping can effectively take into account the diversity within groups and fairness between groups.The comparison between the scoring rate of group tasks and individual tasks confirms that the optimized grouping can improve the learning effect.
作者 张永韡 肖琴 齐亮 薛文涛 ZHANG Yongwei;XIAO Qin;QI Liang;XUE Wentao(College of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China;Information Construction and Management Office,Jiangsu University of Seience and Technology,Zhenjiang 212003,China)
出处 《电气电子教学学报》 2022年第2期32-36,共5页 Journal of Electrical and Electronic Education
基金 江苏省现代教育技术研究课题(2021-R-93695) 江苏科技大学教学方法改革示范课建设项目 江苏省终身教育研究课题(21SZJB006)。
关键词 学习风格 分组学习 人工蜂群算法 learning style group learning artificial bees colony
  • 相关文献

参考文献5

二级参考文献41

  • 1沈博.基于Kolb学习风格模型的调查和分析[J].中国地质大学学报(社会科学版),2006,6(3):66-69. 被引量:32
  • 2IERAPETRITOU M G, FLOUDAS C A. Effective continu- ous-time formulation for short-term scheduling. 2. continuous and semicontinuous processes[J]. Industrial & Engineering Chemistry Research, 1998, 37(11).. 4341-4359. 被引量:1
  • 3MENDES J J M, GONCALVES J F, RESENDE M G C. A random key based genetic algorithm for the resource constrain- ed project scheduling problem[J]. Computers & Operations Research, 2009, 36(1): 92-109. 被引量:1
  • 4CASTRO P M, BARBOSA-POVOA A P, MATOS H A, et al. Simple continuous-time formulation for short-term schedu- ling of batch and continuous processes[J]. Industrial and En- gineering Chemistry Research, 2004, 43(1): 105-118. 被引量:1
  • 5SHAW K J, LEEP L, NOTT H P, et al. Genetic algorithms for multiobjective scheduling of combined batch/continuous process plants [C]//Proceedings of the 2000 Congress on Evolutionary Computation. Washington, D. C. , USA: IEEE, 2000 : 293-300. 被引量:1
  • 6LIXIN T, XIANPENG W. A scatter search algorithm for a multistage production scheduling problem with blocking and semi-continuous batching machine[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5): 976-989. 被引量:1
  • 7KARABOGA D. An idea based on honey bee swarm for nu- merical optimization [ R ]. Kayseri, Turkey: Erciyes University, 2005. 被引量:1
  • 8AKAY B, KARABDGA D. A modified artificial bee colony algorithm for real-parameter optimization [J]. Information Sciences, 2010,DOI: 10. 1016/j. ins. 2010. 07. 015. 被引量:1
  • 9AYAN K, KILIC U. Artificial bee colony algorithm solution for optimal reactive power flow[J]. Applied Soft Computing, 2012, 12(5): 1477-1482. 被引量:1
  • 10KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computa- tion, 2009, 214(1): 108-132. 被引量:1

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部