期刊文献+

引入DDC迁移学习算法的卫星ACS系统故障定位技术 被引量:1

Fault Location Technology of Satellite ACS System with DDC Transfer Learning Algorithm
下载PDF
导出
摘要 基于数据的故障诊断方法凭借其优秀的工程适用性,已成为当前故障诊断领域的重点研究方向;但其算法模型的训练一般需要充足的样本数据,因此难以解决故障样本缺少的诊断问题.针对目标卫星无故障样本情况下的卫星姿态控制系统(ACS)故障诊断问题,提出一种基于DDC(deep domain confusion)迁移学习算法改进的故障定位技术.通过长短期记忆-自编码器(LSTM-AE)网络对标称卫星姿态信息重构并计算残差,再对其进行特征提取以训练BP网络故障定位分类器;同时引入DDC迁移学习算法,于分类器网络中添加域适应层并修改损失函数,学习目标卫星的健康和故障特征知识进而改进算法模型.最后通过三轴气浮台半物理仿真平台,验证了引入DDC迁移学习改进的故障定位技术的有效性. The data-based fault diagnosis method has become a key research direction in the current fault diagnosis field due to its excellent engineering applicability;but the training of its algorithm model generally requires sufficient sample data,so it is difficult to solve the diagnosis problem lacking of fault samples.Aiming at the problem of satellite attitude control system(ACS)fault diagnosis when the target satellite has no fault samples,a fault location technology based on DDC(deep domain confusion)transfer learning algorithm improvement is proposed.Firstly,nominal satellite attitude information is reconstructed by the long-short term memory auto encoder(LSTM-AE)network and its residuals are calculated.Secondly,the features of extraction are trained into the BP network fault location classifier.Thirdly,the DDC transfer learning algorithm is introduced:a domain adaptation layer and modification of the loss function are added to classifier network to learn the health and fault characteristics of the target satellite and improve the algorithm model.Finally,through the semi-physical simulation platform of the three-axis air bearing table,the effectiveness of the fault location technology improved by the introduction of DDC migration learning is verified.
作者 王泽 程月华 宫江雷 郭小红 何漫丽 WANG Ze;CHENG Yuehua;GONG Jianglei;GUO Xiaohong;HE Manli(School of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China;Xi’an University of Electronic Science and Technology,Xi’an 710071,China;State Key Laboratory of Astronavigation Dynamics,Xi’an 710043,China)
出处 《空间控制技术与应用》 CSCD 北大核心 2022年第2期80-87,共8页 Aerospace Control and Application
基金 国家自然科学基金面上资助项目(61972398)。
关键词 迁移学习 神经网络 LSTM-AE 故障定位 transfer learning neural networks LSTM-AE fault location
  • 相关文献

参考文献6

二级参考文献30

  • 1吴丽娜,张迎春.离散小波变换在卫星姿控系统故障诊断中的应用[J].仪器仪表学报,2006,27(z1):407-409. 被引量:8
  • 2Francis M D, Campbell R H. Building a self-healingoperating system[ C ]. The 3rd IEEE International Sym- posium on Dependable, Autonomic and Secure Compu- ting, 2007. 被引量:1
  • 3徐瑞,崔平远,徐晓飞.深空探测器自主任务操作系统研究[C].深空探测技术与应用科学国际会议,青岛,2002. 被引量:1
  • 4Lollar L F. Knowledge-based systems for power manage- ment [ C ]. Space Programs and Technologies Confer- ence, Huntsville, Alabama, 1992. 被引量:1
  • 5莫鑫.基于专家系统的小卫星星敏感器故障诊断方法研究[D].北京:北京控制工程研究所,2002. 被引量:1
  • 6章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,2005:176. 被引量:11
  • 7GOBBO D D, NAPOLITANO M R. Issues in fault de- tectability for dynamic systems [ C ]//The 26h American Control Conference. Chicago: AACC, 2000: 28-30. 被引量:1
  • 8NYBERG M, NIELSEN L. Parity functions as universal residual generators and tool for fault detectability analy- sis [ C ]//IEEE Conference on Decision and Control. San Diego: IEEE, 1997 : 4483-4489. 被引量:1
  • 9CHOW E Y, WILLSKY A D. Analytical redundancy and the design of robust failure detection systems [ J ]. IEEE Transactions On Automatic Control, 1984, 29 (7) : 603-614. 被引量:1
  • 10FRISK E, NYBERG M. A minimal polynomial basis so- lution to residual generation for fault diagnosis in linear systems [J]. Automatiea, 2001, 37(9): 1417-1424. 被引量:1

共引文献32

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部