期刊文献+

一类四阶常微分方程两点边值问题的奇摄动 被引量:1

A Class of Singularly Perturbed Two-Point Boundary Values Problem for Fourth-Order Ordinary Differential Equation
下载PDF
导出
摘要 研究了一类四阶常微分方程两点边值奇摄动问题,分析其边界层行为.由匹配渐近展开法,构造了问题的外部解;通过引入伸展变换,构造边界层(内层)函数,获得内层解.通过Van Dyke匹配原则,将内外解进行匹配,得到奇摄动问题的一致有效的复合解.最后,通过数值解验证了结果的正确性. The two-point boundary value singularly perturbed problem for a class of fourth-order ordinary differential equations is studied.The external solution of the problem is constructed by the asymptotic expansion method;By introducing the stretching transformation,the boundary layer function is obtained.Finally,through the Van Dyke matching principle,the outer and inner expansion are matched to obtain the uniformly effective composite expansion of the singularly perturbed problem.The correctness of the result is verified by numerical solution.
作者 胡永生 HU Yong-sheng(College of General Education,Fujian Vocational College of Agriculture,Fuzhou Fujian 350007,China)
出处 《淮阴师范学院学报(自然科学版)》 CAS 2022年第2期115-120,共6页 Journal of Huaiyin Teachers College;Natural Science Edition
关键词 四阶常微分方程 边界层 特异极限 Van Dyke匹配原则 fourth-order ordinary differential equation boundary layer distinguished limit Van Dyke matching principle
  • 相关文献

参考文献9

二级参考文献5

共引文献14

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部