期刊文献+

芦苇笋采收机的路径控制系统研究 被引量:1

Research on Path Control System of Reed Shoot Harvester
下载PDF
导出
摘要 移动机器人技术应用到农业机械上已经成为了农业机械未来发展的主要趋势。为此,针对芦苇笋采收机自动采收过程中的定位误差和全局路径规划,以传统A*搜索算法为基础,动态地增加其在栅格地图上的领域拓展范围,以此增加规划路径平滑度。仿真结果表明:改进A*算法所规划的路径更为平滑,主要反映在路径长度平均减小7.1%,路径转折点个数平均减少36.12%,路径转角角度平均减少18.46%。同时,建立了定位误差模型,通过与改进A*算法融合后的系统在实际测试中与仿真实验相吻合。 The application of mobile robot technology to agricultural machinery has become the main trend in the future development of agricultural machinery.Aiming at the positioning error and global path planning in the automatic harvesting process of the reed shoot harvester,based on the traditional A*search algorithm,it dynamically increases its field expansion range on the grid map to increase the smoothness of the planned path.The simulation results show that the improved A*algorithm makes the planned path smoother.This is mainly reflected in the average decrease in path length by 7.1%,average decrease in the number of path turning points by 36.12%,and an average decrease in path angle of 18.46%.At the same time,a positioning error model is established,and the system fused with the improved A*algorithm is consistent with the simulation experiment in the actual test.
作者 万晋廷 高自成 李立君 马喆 Wan Jinting;Gao Zicheng;Li Lijun;Ma Zhe(Mechanical and Electrical Engineering Institute,Central South University of Forestry and Technology,Changsha 410004,China)
出处 《农机化研究》 北大核心 2022年第8期30-36,41,共8页 Journal of Agricultural Mechanization Research
基金 湖南省重点领域研发计划项目(2019NK2022)。
关键词 芦苇笋采收机 路径规划 误差模型 A*算法 动态领域 路径平滑 reed shoot harvester path planning error model A*algorithm dynamic field smooth path
  • 相关文献

参考文献10

二级参考文献56

  • 1赵真明,孟正大.基于加权A~*算法的服务型机器人路径规划[J].华中科技大学学报(自然科学版),2008,36(S1):196-198. 被引量:33
  • 2Hart P E, Nilsson N J, Raphael B. A formal basis for the heuris- tic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. 被引量:1
  • 3Stentz A. Optimal and efficient path planning for partially- known environments[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1994: 3310-3317. 被引量:1
  • 4Koenig S, Likhachev M. D* Lite[CI//AAAI/IAAI. Menlo Park, USA: American Association for Artificial Intelligence, 2002: 476-483. 被引量:1
  • 5Stentz A. The focussed D* algorithm tk)r real-time replan- ning[C]//Proceedings of International Joint Conference on Ar- tificial Intelligence. San Mateo, USA: Morgan Kaufmann Pub- lishers, 1995: 1652-1659. 被引量:1
  • 6Yap R Grid-based path-finding[Ml//Advances in Artificial In- telligence. Berlin, Germany: Springer-Verlag, 2002: 44-55. 被引量:1
  • 7Botea A, MUller M, Schaeffer J. Near optimal hierarchical path- finding[J]. Journal of Game Development, 2004, 1 ( 1): 7-28. 被引量:1
  • 8Reynolds C W. Steering behaviors for autonomous characters [C]//Game Developers Conference. 1999: 763-782. 被引量:1
  • 9Montemerlo M, Becker J, Bhat S, et al. Junior: The Stanford entry in the urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597. 被引量:1
  • 10Ferguson D, Stentz A. Field D*: An interpolation-based path planner and replanner[M]//Robotics Research. Berlin, Ger- many: Springer-Verlag, 2007: 239-253. 被引量:1

共引文献206

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部