期刊文献+

基于改进A^(*)与TEB算法融合的移动机器人路径规划 被引量:5

Mobile Robot Path Planning Based on the Fusion of Improved A^(*) and TEB Algorithm
下载PDF
导出
摘要 移动机器人在复杂环境中,利用传统A^(*)算法进行路径规划时,往往搜索效率低、转折点多、路径不平滑,且无法有效应对动态障碍物。本文提出了一种基于改进A^(*)与TEB算法融合的方案。通过设置虚拟膨胀区域、改进启发函数以及优化拐点选取策略,提高了算法的搜索效率与安全性,然后在全局最优的前提下融合TEB算法,实现移动机器人的动态路径规划。实验验证,融合算法能够有效提高搜索效率,实现路径平滑及动态避障,且满足阿克曼机器人的约束要求,具有良好的可行性与适应性。 When mobile robots use traditional A^(*) algorithm to carry out path planning in complex environment, they often have low search efficiency, many turning points, uneven path and can not effectively deal with dynamic obstacles. This paper presents a scheme based on the fusion of improved A^(*) and TEB algorithm. The search efficiency and security of the algorithm are improved by setting up virtual expansion region, improving heuristic function and optimizing inflection point selection strategy. Then, the dynamic path planning of mobile robot is realized by integrating the TEB algorithm under the premise of global optimization. Experiments verify that the fusion algorithm can effectively improve the search efficiency, achieve path smoothing and dynamic obstacle avoidance, and meet the constraints of the Ackerman robot, with good feasibility and adaptability.
作者 徐嘉骏 辛绍杰 邓寅喆 XU Jiajun;XIN Shaojie;DENG Yinzhe
出处 《计量与测试技术》 2022年第5期26-30,共5页 Metrology & Measurement Technique
关键词 路径规划 改进A^(*)算法 TEB算法 融合算法 阿克曼机器人 path plannin improved A-star algorithm TEB algorithm fusion al gorithm Ackerman robot
  • 相关文献

参考文献5

二级参考文献52

  • 1赵真明,孟正大.基于加权A~*算法的服务型机器人路径规划[J].华中科技大学学报(自然科学版),2008,36(S1):196-198. 被引量:33
  • 2张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443. 被引量:120
  • 3朱庆保.动态复杂环境下的机器人路径规划蚂蚁预测算法[J].计算机学报,2005,28(11):1898-1906. 被引量:51
  • 4Martnez P,Castillo O,Soria J,et al.Optimal design ofmembership functions of a fuzzy logic controller foran autonomous wheeled mobile robot using ant colonyoptimization[J].Journal of Automation,Mobile Robotics& Intelligent Systems,2010,4(1):3-16. 被引量:1
  • 5Purian F K,Sadeghian E.Mobile robots path planningusing ant colony optimization and fuzzy logic algorithmsin unknown dynamic environments[C]//Proceedings ofInternational Conference on Control,Automation,Roboticsand Embedded Systems,2013. 被引量:1
  • 6Socha K,Dorigo M.Ant colony optimization for continuousdomains[J].European Journal of Operational Research,2008,185(3):1155-1173. 被引量:1
  • 7Michalis M,Shengxiang Y.A memetic ant colony optimizationalgorithm for the dynamic travelling salesmanproblem[J].Soft Computing-A Fusion of Foundations,Methodologies & Applications,2011,15(7):1405-1425. 被引量:1
  • 8Zhiping Z,Yunfeng N,Gao M.Enhanced ant colony optimizationalgorithm for global path planning of mobilerobots[C]//Proceedings of International Conference onComputational and Information Sciences,2013:698-700. 被引量:1
  • 9Ok S H,Seo W J,Ahn J H,et al.An ant colony optimizationapproach for the preference-based shortestpath search[J].Journal of the Chinese Institute of Engineers,2011,34(2):181-196. 被引量:1
  • 10朱正,刘士荣,张波涛.-种基于改进蚁群算法的移动机器人全局路径规划方法[C]//第三十届中国控制会议论文集,中国烟台,2011:4083-4087. 被引量:1

共引文献130

同被引文献37

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部