摘要
激光供能为无人机长时间工作提供了保障,但是激光供能对捕获、跟踪和对准(APT)系统具有较高的要求。本文针对无人机距离地面补给站远、激光跟踪延迟、无人机供给能量不足等问题,提出一种基于自适应卡尔曼滤波算法,采用当前统计模型构建,通过残差检测对无人机模型进行实时的修正,加快位置更新速度,实现激光对无人机的最优跟踪。经过仿真表明,传统卡尔曼滤波算法的误差角度在0.2°左右,本方法的误差角度在0.1°以内,能实现较好的跟踪效果。
UAV has been widely used for its miniaturization,high concealment and high flexibility.Laser power supply provides guarantee for uav to work for a long time,but laser power supply has higher requirements for acquisition,tracking and alignment(APT)system.Depot is far off the ground of unmanned aerial vehicle(UAV),the author of this paper,laser tracking delay,UAVs such problems as insufficient supply of energy,is put forward based on adaptive Kalman filter algorithm,the current statistical model was used to construct,by residual error detection of UAV real-time correction model,speed up the location update,the optimal tracking laser for unmanned aerial vehicle(UAV).The simulation results show that the error angle of the traditional Kalman filtering algorithm is about 0.2°,and the error angle of this method is within 0.1°,which can achieve better tracking effect.
作者
袁建华
赵子玮
李尚
刘宇
洪沪生
黄开
YUAN Jian-hua;ZHAO Zi-wei;LI Shang;LIU Yu;HONG Hu-sheng;HUANG Kai(College of Electricity & New Energy,China Three Gorges University,Yichang 443000,China)
出处
《激光与红外》
CAS
CSCD
北大核心
2021年第3期279-284,共6页
Laser & Infrared
基金
煤燃烧国家重点实验室开放基金项目(No.FSKLCCA1607)
梯级水电站运行与控制湖北省重点实验室基金项目(No.2015KJX07)
产学研协同培养研究生实践创新能力机制研究项目(No.SDYJ201604)资助。