期刊文献+

变异反向学习的自适应帝王蝶优化算法 被引量:2

Adaptive Monarch Butterfly Algorithm Based on Mutation Reverse Learning
下载PDF
导出
摘要 针对于原始帝王蝶优化算法易陷入局部最优解、收敛性不好等问题,提出变异反向学习的自适应帝王蝶优化算法。将遗传算法的变异思想与反向学习策略结合来替代原始的迁移算子,提高全局的收敛性。在原始帝王蝶优化算法的调整算子中融入自适应的策略,使种群更具多样性。在更新的种群中将排序在最后的5只帝王蝶进行柯西变异,让变异个体附近生成更大的扰动,使整个群体在更大的范围内进行寻优。为了验证改进帝王蝶优化算法,通过基准函数和Wilcoxon秩和检验对其进行测试,实验结果表明改进算法的收敛速度及寻优精度得到了很大改进。 Aiming at the problem that the original monarch butterfly optimization algorithm is easy to fall into the local optimal solution and has poor convergence,an adaptive monarch butterfly optimization algorithm based on mutation reverse learning is proposed.Firstly,the mutation idea of genetic algorithm is combined with the reverse learning strategy to replace the original transfer operator to improve the global convergence.Then,an adaptive strategy is integrated into the adjustment operator of the original monarch butterfly optimization algorithm to make the population more diverse.Finally,Cauchy mutation will be carried out among the last five monarch butterflies in the updated population,which will generate greater disturbance near the mutated individuals and make the whole population search for optimization in a larger range.In order to verify the improved monarch butterfly optimization algorithm,benchmark function and Wilcoxon rank sum test are used to test it.The experimental results show that the convergence speed and optimization accuracy of the improved algorithm are greatly improved.
作者 孙成硕 戚志东 叶伟琴 单梁 SUN Chengshuo;QI Zhidong;YE Weiqin;SHAN Liang(College of Automation,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第11期66-72,共7页 Computer Engineering and Applications
基金 国家自然科学基金(61374153) 江苏省研究生科研与实践创新计划项目(KYCX21_0293)。
关键词 帝王蝶优化算法 变异反向学习 自适应策略 柯西变异 monarch butterfly optimization algorithm variation reverse learning adaptive strategy Cauchy variation
  • 相关文献

参考文献7

二级参考文献67

  • 1陈辉,张家树,张超.实数编码混沌量子遗传算法[J].控制与决策,2005,20(11):1300-1303. 被引量:41
  • 2Narayanan A, Moore M. Quantum-inspired genetic algorithm[C]. Proc of IEEE Int Conf on Evolutionary Computation. Piseataway: IEEE Press, 1996: 61-66. 被引量:1
  • 3Han K H, Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problems[C]. Proc of IEEE Conf on Evolutionary Computation. Piscataway: IEEE Press, 2000: 1354-1360. 被引量:1
  • 4Han K H, Park K H, Lee C H, et al. Parallel quantum-inspired genetic algorithm for combinatorial optimization problems [ C]. Proc of the IEEE Conf on Evolutionary Computation. Piscataway: IEEE Press, 2001 : 1442-1429. 被引量:1
  • 5Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Trans on Evolutionary Computation, 2002, 6(6) : 580-593. 被引量:1
  • 6Yang S Y, Jiao L C. The quantum evolutionary programming [C]. Proc of the 5th Int Conf on Computational Intelligence and Multimedia Applications. Xi'an: IEEE. 2003: 362-367. 被引量:1
  • 7Cruz A V A, Vellasco M B R, Pacheco M A C. Quantum-inspired evolutionary algorithm for numerical optimization [C]. IEEE Congress on Evolutionary Computation. Vancouver, 2006: 2630-2637. 被引量:1
  • 8Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102. 被引量:1
  • 9Tu Z, Lu Y. A robust stochastic genetic algorithm (STGA) for global numerical optimization [J]. IEEE Trans on Evolutionary Computation, 2004, 8(5 ) : 456- 470. 被引量:1
  • 10杨若黎,顾基发.一种高效的模拟退火全局优化算法[J].系统工程理论与实践,1997,17(5):29-35. 被引量:101

共引文献81

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部