期刊文献+

用遗传模拟退火算法挖掘特征项权重的研究 被引量:3

Using Genetic-Simulated Annealing Algorithm to Find Attribute Weighting
下载PDF
导出
摘要 能否在范例库中检索和选择出最为相似的范例决定了范例推理系统性能。文中介绍了遗传算法和模拟退火算法,比较了两种算法的特性,提出一种混合遗传模拟退火算法。该算法不但具有强的局部搜索能力,还缩短了搜索时间。将该算法用于发掘范例库上特征权重,理论分析和实验结果表明了这种混合遗传模拟退火算法优于普通的遗传算法。 This article introduces two algorithms, genetic algorithm and simulated annealing algorithm, and puts forward one weighting method by using genetic - simulated annealing algorithm. This algorithm not only has the strong partial searching ability,moreover also reducers the .searching time. The theoretical analysis and experimental results show that this method has better performance than other methods, by using this algorithm to find the characteristic weighting of case base.
出处 《计算机技术与发展》 2007年第2期143-145,148,共4页 Computer Technology and Development
基金 安徽省教育厅科研项目(2005kj0552005kj056)
关键词 遗传算法 模拟退火算法 权重 范例推理 genetic algorithm genetic - simulated annealing algorithm weighting case - based reasoning
  • 相关文献

参考文献11

二级参考文献59

  • 1朱东柏,马春秋.等电阻电压法在空心干式电抗器设计中的应用[J].变压器,1994,31(7):21-23. 被引量:18
  • 2[1]Mario Lenz.Case-based reasoning :from foundations to applications[M].Berlin:Springer,1998. 被引量:1
  • 3[2]David Leake,Andrew Kinley,David Wilson.Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence[C].Japan:Nagoya,1997.246-251. 被引量:1
  • 4[3]Hanney K,Keane M.Proceedings of the Third European Workshop on Case-based Reasoning[C].Lausanne.1996.178-192. 被引量:1
  • 5[4]Azuaje F,Dubitzky W,black N,et al.Discovering relevance knowledge in data:a growing cell structure approach[J] .IEEE Transactions on systems,man,and cybernetics,2000,30(3):448-460. 被引量:1
  • 6[5]Smith B,Keane M T.Proc.14th International Joint Conference on Artificial Intelligence[C].Morgan Kaufmann,1995,337-382. 被引量:1
  • 7[6]Kraslawski A,Pedrycz W,Nystrom L.Fuzzy neural network as instance generator for case-based reasoning system[J].Neural Computing & Applications,1999,8:106-113. 被引量:1
  • 8[7]Salzberg S L.A nearest hyperrectangle learning method[J].Machine Learning ,1991,6:251-276. 被引量:1
  • 9[8]Wettschereck D,Dietterich T G.An experimental comparison of the nearest neighbor and nearest hyperrectangle algorithms[J].Machine Learning,1995,19:5-28. 被引量:1
  • 10[9]Kira K,Rendell L A.Proceedings of the 9th International Conference on Machine Learning [C].Scotland:Aberdeen,Morgan Kaufmann,1992,249-256. 被引量:1

共引文献237

同被引文献31

引证文献3

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部