期刊文献+

Spatio-temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms 被引量:7

原文传递
导出
摘要 The rapidly increasing wind power penetration presents new challenges to the operation of power systems.Improving the accuracy of wind power forecasting is a possible solution under this circumstance.In the power forecasting of mul-tiple wind farms,determining the spatio-temporal correlation of multiple wind farms is critical for improving the forecasting accuracy.This paper proposes a spatio-temporal convolutional network(STCN)that utilizes a directed graph convolutional structure.A temporal convolutional network is also adopted to characterize the temporal features of wind power.Historical data from 15 wind farms in Australia are used in the case study.The forecasting results show that the proposed model has higher accuracy than the existing methods.Based on the structure of the STCN,asymmetric spatial correlation at different temporal scales can be observed,which shows the effectiveness of the proposed model.
出处 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期388-398,共11页 现代电力系统与清洁能源学报(英文)
基金 National Key Research and Development Program(No.2020YFB0905900) National Natural Science Foundation of China(No.51777065).
  • 相关文献

同被引文献89

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部