期刊文献+

基于条件变分自编码器的射线样本生成算法 被引量:1

Ray Sample Generation Algorithm Based on Conditional Variational Auto-encoder
下载PDF
导出
摘要 射线追踪数据样本的缺失是造成大规模多输入多输出(Massive Multiple-Input MultipleOutput,Massive MIMO)信道特征预测出现较多预测误差较高的用户的主要原因。为了降低高误差用户数及预测误差,提出了一种基于条件变分自编码器(Conditional Variational AutoEncoder,CVAE)的射线样本生成算法来增添缺失区间的射线样本。仿真结果表明,基于所提出的算法在原有射线样本集中扩充新样本后,可将高预测误差用户数降低到原来的46.4%;完善训练集后的神经网络在降低得到信道幅值的时间开销的同时,将信道幅值预测精度提升了6.2%。 The lack of ray-tracing-data samples can cause more high-prediction-error users to appear in the Massive MIMO(Multiple-Input Multiple-Output) channel feature prediction. In order to reduce the number of high-prediction-error users and prediction errors, a ray sample generation algorithm based on CVAE(Conditional Variational Auto-Encoder) is proposed. This algorithm can add ray samples in the missing intervals. The simulation results indicate that the number of high-prediction-error users can be reduced to 46.4% by expanding new samples in the original ray sample set based on the proposed method. Moreover,the extended training set improves the channel amplitude prediction accuracy by 6.2% while obtaining a reduction in the time overhead of predicting the channel amplitude.
作者 朱军 杨军 李凯 于文欣 ZHU Jun;YANG Jun;LI Kai;YU Wenxin(School of Electronic and Information Engineering,Anhui University,Hefei Anhui 230601,China;ShanghaiTech University,Shanghai 201210,China;Huawei Shanghai Research Institute,Shanghai 201206,China)
出处 《通信技术》 2022年第4期409-414,共6页 Communications Technology
基金 国家自然科学基金项目(62071002)。
关键词 大规模多输入多输出 三维信道模型 条件变分自编码器 射线追踪 massive multiple-input multiple-output 3D channel model conditional variational auto-encoder ray-tracing
  • 相关文献

参考文献2

二级参考文献10

  • 13GPP. 3D channel model for LTE: 3GPP TR36,873 IS]. 被引量:1
  • 23GPP, Further advancements for E-UTRA physical layer aspects: 3G PP TR36.814 IS]. 被引量:1
  • 33GPP, Small Cell Enhancements for E- UTRAN-Physical Layer Aspects: 3GPP TR36.872 IS]. 被引量:1
  • 43GPP. Physical layer Measurements: 3GPP TS36.214 IS]. 被引量:1
  • 53GPP. Mobility Enhancements in.Heterogeneous Networks: 3GPP TR36.839 IS]. 被引量:1
  • 6Updated Scenarios, Requirements and KPIs for 5G Mobile and Wireless System with Recommendations for Future Investigations: METIS_D1.5_vl iS]. 被引量:1
  • 7PIRO G, GRIECO L A, BOGGIA G, et al. Simulating LTE Cellular Systems: an Open Source Framework [J]. IEEE Transactions on Vehicular Technology, 2010, 60(2): 498-513. DOI: 10.1109/TVT.2010.2091660. 被引量:1
  • 8DONGARRA J, FOSTER I, FOX G, et al. Sourcebook of Parallel Computing [MI. USA: Elsevier Science and Technology, 2003. 被引量:1
  • 9BILELB R, NAVID N, BOUKSIAA M S M. Hybrid CPU-GPU Distributed Framework for Large Scale Mobile Networks Simulation[C]// 2012 IEEE/ACM 16th International Symposium on Distributed Simulation and Real Time Applications, 2012. USA: IEEE: 44 53, 2012. DOI: 10.1109/DS-RT.2012.15. 被引量:1
  • 10李凯,徐景,杨旸.5G环境下系统级仿真建模与关键技术评估[J].中兴通讯技术,2016,22(3):41-46. 被引量:12

共引文献13

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部