期刊文献+

基于神经网络的3维无线信道特征预测及评估 被引量:4

Prediction and evaluation of three-dimensional wireless channel features based on neural network
下载PDF
导出
摘要 传统的5G Massive MIMO(multiple input multiple output)3维信道模型复杂度高、计算量大,无法满足网络需求.针对此问题,提出一种基于神经网络的3维无线信道特征预测及评估模型.该模型只依赖于高精地图产生的射线追踪数据,无须搭建测试网络.仿真结果表明:该模型能降低网络优化成本及时间开销、快速预测信道特征和评估网络性能. The traditional 5G Massive MIMO(multiple input multiple output)three-dimensional channel model has high complexity and large computation complexity,which cannot meet the network requirements.To solve this problem,a three-dimensional wireless channel feature prediction and evaluation model based on neural network was proposed.The model only relied on ray tracing data from high-precision map,and did not need to build a test network.The simulation results showed that this model could reduce network optimization costs and time overhead.This model could quickly predict channel feature and evaluate network performance.
作者 朱军 蒋一鸣 李凯 王写 成博 ZHU Jun;JIANG Yiming;LI Kai;WANG Xie;CHENG Bo(Institute of Electronic Information Engineering,Anhui University,Hefei 230601,China;Institute of Creativity and Art,Shanghai University of Science and Technology,Shanghai 201210,China;Huawei Technical Service Co.,Ltd.,Shanghai 201206,China)
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2020年第6期36-42,共7页 Journal of Anhui University(Natural Science Edition)
基金 安徽省科技重大专项(18030901010)。
关键词 5G 大规模多输入多输出 3维信道模型 信道特征 神经网络 5G Massive multiple input multiple output three-dimensional channel model channel feature neural network
  • 相关文献

参考文献1

二级参考文献9

  • 13GPP. 3D channel model for LTE: 3GPP TR36,873 IS]. 被引量:1
  • 23GPP, Further advancements for E-UTRA physical layer aspects: 3G PP TR36.814 IS]. 被引量:1
  • 33GPP, Small Cell Enhancements for E- UTRAN-Physical Layer Aspects: 3GPP TR36.872 IS]. 被引量:1
  • 43GPP. Physical layer Measurements: 3GPP TS36.214 IS]. 被引量:1
  • 53GPP. Mobility Enhancements in.Heterogeneous Networks: 3GPP TR36.839 IS]. 被引量:1
  • 6Updated Scenarios, Requirements and KPIs for 5G Mobile and Wireless System with Recommendations for Future Investigations: METIS_D1.5_vl iS]. 被引量:1
  • 7PIRO G, GRIECO L A, BOGGIA G, et al. Simulating LTE Cellular Systems: an Open Source Framework [J]. IEEE Transactions on Vehicular Technology, 2010, 60(2): 498-513. DOI: 10.1109/TVT.2010.2091660. 被引量:1
  • 8DONGARRA J, FOSTER I, FOX G, et al. Sourcebook of Parallel Computing [MI. USA: Elsevier Science and Technology, 2003. 被引量:1
  • 9BILELB R, NAVID N, BOUKSIAA M S M. Hybrid CPU-GPU Distributed Framework for Large Scale Mobile Networks Simulation[C]// 2012 IEEE/ACM 16th International Symposium on Distributed Simulation and Real Time Applications, 2012. USA: IEEE: 44 53, 2012. DOI: 10.1109/DS-RT.2012.15. 被引量:1

共引文献11

同被引文献23

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部