期刊文献+

锂离子电池在不同充电策略下的剩余寿命预测

Prognostics of remaining useful life of lithium-ion batteries under different charging strategies
下载PDF
导出
摘要 针对锂离子电池在循环过程中由于充电策略变化引起电池衰退趋势变化从而导致难以追踪的问题,提出了一种适用于不同充电策略的锂电池剩余寿命预测方法。基于NASA与斯坦福-MIT的电池数据提取电池电压平均变化率构建为电池衰减健康因子;将健康因子与电池容量载入基于樽海鞘群算法优化的极限学习机模型之中训练,获取电池在不同充电策略状态下的衰减模型。使用其他充电策略的电池数据对剩余寿命模型进行验证并评估。结果表明:提出的方法能够在确认充电策略情况下准确预测电池寿命,并且在电池运行过程中能够追踪电池容量变化趋势。 Aiming at the problem that the decay trend of the lithium-ion battery changes due to the change of the charging strategy during the cycle,which is difficult to track,a method for predicting the remaining life of the lithium battery suitable for different charging strategies was proposed.Based on the battery data of NASA and Stanford-MIT,the average change rate of battery voltage was extracted to construct the battery decay health factor,and the health factor and battery capacity were loaded into the extreme learning machine model optimized based on the salp swarm algorithm to train to obtain the attenuation model of the battery under different charging strategy states.The remaining life model was verified and evaluated using the battery data of other charging strategies.The experimental results show that the proposed method can accurately predict the battery life under the condition of confirming the charging strategy,and can track the battery capacity change trend during the battery operation.
作者 赵沁峰 蔡艳平 王新军 ZHAO Qinfeng;CAI Yanping;WANG Xinjun(Rocket Force University of Engineering, Xi’an 710025, China)
机构地区 火箭军工程大学
出处 《兵器装备工程学报》 CSCD 北大核心 2022年第4期250-256,共7页 Journal of Ordnance Equipment Engineering
关键词 锂离子电池 电压平均变化率 樽海鞘群算法 极限学习机 剩余使用寿命 lithium-ion batteries the average change rate of battery voltage salp swarm algorithm extreme learning machine remaining useful life
  • 相关文献

参考文献7

二级参考文献59

  • 1王海燕,杨方廷,刘鲁.标准化系数与偏相关系数的比较与应用[J].数量经济技术经济研究,2006,23(9):150-155. 被引量:99
  • 2HEI W, WILLIARD N, OSTERMAN M, et al. Prognos- tics of lithium-ion batteries based on Dempster-Shaier theory and the Bayesian Monte Carlo method [ J]. J Power Sources, 2011, 196(23):10314-10321. 被引量:1
  • 3LEE S, KIM J, LEE J, et al. State-of-charge and ca- pacity estimation of lithium-ion battm7 using a new open-circuit voltage versus state-of-charge E j]. Journal of Power Sources, 2008, 185(2) : 1376-1373. 被引量:1
  • 4XING Y J, EDEN W M, KWOK-LEUNG M T, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries [ J]. Microelectron- ics Reliability, 2013, 53(6): 811-820. 被引量:1
  • 5WIDODO A, SHIM M, CAESARENDRA W, et al. In- telligent prognostics and health management [ Z ]. Den- ver: CO, 2008: 6-9. 被引量:1
  • 6SAHA B, GOEBEL K, POLL S. An integrated ap- proach to battery health monitoring using Bayesian re- gression and state estimation I J]. 2007 IEEE Autotest- con, 2007 (1-2) : 646-653. 被引量:1
  • 7LAN Y, SOH Y C, HUANG G B. Ensemble of online sequential extreme learning machine [ J ]. Neurocom- puting, 2009(72): 3391-3395. 被引量:1
  • 8ZHAO J, WANG Z, PARK D S. Online sequential ex- treme learning machine with forgetting mechanism [ J ]. Neurocomputing, 2012, 87 (11) : 79-89. 被引量:1
  • 9杨树仁,沈洪远.基于相关向量机的机器学习算法研究与应用[J].计算技术与自动化,2010,29(1):43-47. 被引量:56
  • 10杨柳,张磊,张少勋,刘建伟.单核和多核相关向量机的比较研究[J].计算机工程,2010,36(12):195-197. 被引量:18

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部